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Abstract

This thesis introduces some formal techniques which can be used for synthesis of VLSI
(very large scale integration) architectures for DSP (digital signal processing) algorithms.
These techniques can be used to design architectures for single-rate/single-dimensional

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP.

For single-rate/single-dimensional DSP, we have developed a novel technique for ex-
haustively generating all retiming and scheduling solutions for the DSP algorithm. The
significance of this contribution is two-fold. First, it allows a circuit designer to explore
a large space of possible high-level implementations for the algorithm, which allows the
designer to make a good decision about the high-level architectural details of the de-
sign. Second, this work explicitly shows the important interaction between retiming and .
scheduling in high-level synthesis. While retiming and scheduling have been treated as
separate problems in the past, our work uses a mathematical framework to show that

retiming is a special case of scheduling.

Also for single-rate/single-dimensional DSP, we have developed techniques for com-
puting the minimum number of registers required to implement a statically scheduled
DSP program. Closed-form expressions are derived for computing the minimum number
of registers assuming various memory models with or without retiming the scheduled
DFG. This is an important problem because memory typically occupies a large portion
of the arca of a DSP implementation (often over half of the area), and minimizing this

area leads to more efficient designs.

For multirate/single-dimensional DSP, we have developed a multirate folding tech-
nique which can be used to synthesize single-rate architectures from multirate DSP
algorithms. Prior to the development of this formal technique, the design of single-rate

architectures for multi-rate DSP algorithms was performed usfng ad hoc design tech-

niques.

For single-rate/multi-dimensional DSP, we have developed two techniques for retim-
ing two-dimensional data-flow graphs. These techniques are designed to minimize the
memory requircments under a given clock period constraint. These techniques can result
in retimed circuits which use less than 50% of the memory required by previously used

techniques.
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Abstract

This thesis introduces some formal techniques which can be used for synthesis of VLSI
(very large scale integration) architectures for DSP (digital signal processing) algorithms.
These techniques can be used to design architectures for single-rate/single-dimensional

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP.

For single-rate/single-dimensional DSP, we have developed a novel technique for ex-
haustively generating all retiming and scheduling solutions for the DSP algorithm. The
significance of this contribution is two-fold. First, it allows a circuit designer to explore
a large space of possible high-level implementations for the algorithm, which allows the
designer to make a good decision about the high-level architectural details of the de-
sign. Second, this work explicitly shows the important interaction between retiming and
scheduling in high-level synthesis. While retiming and scheduling have been treated as
separate problems in the past, our work uses a mathematical framework to show that

retiming is a special case of scheduling.

Also for single-rate/single-dimensional DSP, we have developed techniques for com-
puting the minimum number of registers required to implement a statically scheduled
DSP program. Closed-form expressions are derived for computing the minimum number
of registers assuming various memory models with or without retiming the scheduled
DFG. This is an important problem because memory typically occupies a large portion
of the area of a DSP implementation (often over half of the area), and minimizing this

area leads to more efficient designs.

For multirate/single-dimensional DSP, we have developed a multirate folding tech-
nique which can be used to synthesize single-rate architectures from multirate DSP
algorithms. Prior to the development of this formal technique, the design of single-rate
architectures for multi-rate DSP algorithms was performed using ad hoc design tech-

niques.

For single-rate/multi-dimensional DSP, we have developed two techniques for retim-
ing two-dimensional data-flow graphs. These techniques are designed to minimize the
memory requirements under a given clock period constraint. These techniques can result
in retimed circuits which use less than 50% of the memory required by previously used
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Chapter 1

Introduction

1.1 Overview

This thesis introduces some formal techniques which can be used for the synthesis of
VLSI (1, 2] (very large scale integration) architectures for DSP (3, 4, 5, 6] (digital signal
processing) algorithms. DSP is used in many applications such as compact disc players,
digital television, videoconferencing systems, digital telephony, radar, and sonar, just
to name a few. VLSI architectures for DSP algorithms must be designed to satisfy
constraints on the sampling rate, chip size, and power consumption. Without adequate

implementations, DSP algorithms would not be useful to consumers.

Figure 1.1 shows a simplified version of the process of generating a silicon solution
for a given application. There are three main steps in this process. The first step is
to develop or choose the proper DSP algorithm for the application. The second step
is high-level synthesis (7] -[26], which maps the algorithm to a VLSI architecture, and
the third step is low-level synthesis, which maps the VLSI architecture to silicon. These
three steps are not independent, and it has become apparent that a good understanding
of all three of these steps is required to design an efficient silicon solution for a given

application. The focus of this thesis, as indicated in the figure, is on the area of high-



level synthesis, i.e., designing high-level VLSI architectures for DSP algorithms. The
formal techniques introduced in this thesis help provide a better understanding of the

algorithm — architecture step and provide new techniques for mapping algorithms to

architectures.
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Figure 1.1: A simplified version of the design process from application to silicon.

As DSP algorithms become more complex and transistor sizes become smaller, the
tasks of designing and testing VLSI architectures for DSP have become very challenging
due to the sheer size of these tasks. In order for products to be introduced in a timely
manner, CAD (computer-aided design) tools (8, 26, 24, 16, 10, 12, 20, 22, 23, 14, 15] are
often required. These tools not only decrease design time, but they also make the design
process more tractable, improving the reliability of the final VLSI design. These CAD
tools are based on formal design techniques which can be used to automate the process

of synthesizing VLSI architectures for DSP algorithms.




Some formal techniques for synthesizing VLSI architectures for DSP algorithms are
introduced in this thesis. These techniques can be used to explore new VLSI designs for
DSP algorithms and improve CAD tools which are used to design VLSI architectures for

DSP algorithms. A description of these techniques is given in the following section.

1.2 Contributions

The contributions of this thesis fall into the categories of retiming [27], folding [28], and

register minimization [29]. A concise description of these contributions follows.

e Retiming

— Exhaustive retiming: A novel technique for exhaustively generating all re-
timing solutions for a DFG is developed. This technique, which is based on
the ideas in [30], [31], allows a circuit designer to examine many retiming
solutions rather than a single solution which is generated using a heuristic or
an optimization scheme. This is useful because it is easy to select the best
retimed solution optimized for circuit parameters, such as routing area, from

all retiming solutions.

— Two-dimensional retiming: Two novel techniques are developed for retiming
two-dimensional data-flow graphs (DFGs) to minimize the memory require-
ments under a given clock period constraint. These two techniques are inte-
ger linear programming (ILP) 2-D retiming and orthogonal 2-D retiming [32).
These techniques offer greater flexibility than the technique proposed in [33],
and they can reduce the memory requirement of retimed circuits by over 50%

compared to the technique in [34].




— Multirate retiming: Multirate retiming constraints are formalized as part of
the multirate folding formulation. Multirate retiming has received little at-
tention in the past, and most of the previous work has been focused on main-
taining properties such as liveness and reachability in synchronous data-flow
graphs (e.g., see [35]). The treatment of multirate retiming in this thesis con-
siders the problem at a more fundamental level by using some simple identities
of multirate DSP [5]. We show that our multirate retiming formulation is use-
ful for high-level synthesis of single-rate VLSI architectures for multirate DSP

algorithms {36].
¢ Folding

— Exhaustive Scheduling: A novel technique for exhaustively generating all time
schedules for folding a DFG is developed [31]. This technique, termed “ex-
haustive scheduling”, has three important features. First, it shows the im-
portant interaction between retiming and scheduling in a solid mathematical
framework. Retiming and scheduling have only recently been considered to-
gether [11, 26, 12, 37, 38], and none of these works has given a mathematical
framework for demonstrating how retiming and scheduling interact in high-
level synthesis. Second, our mathematical framework can be used to show
that retiming is simply a special case of scheduling. Many researchers have
thought this to be true for a long time, but none have shown this mathe-
matically. Finally, exhaustive scheduling allows a circuit designer the option
of evaluating several different schedules for characteristics that are difficult
to include in heuristics [12, 15, 26] or ILP models [39, 40, 22, 37] used for

scheduling.



— Multirate folding: A novel technique for folding multirate DSP algorithms is
developed {36]. This technique maps multirate DSP algorithms to single-rate
VLSI architectures. For example, multirate folding can be used to design
single-rate architectures for algorithms which use multirate filter banks, such
as the discrete wavelet transform (DWT) [41, 42, 43, 44, 45]. Prior to the
development of multirate folding, single-rate VLSI architectures for multirate
DSP algorithms were designed using ad hoc design techniques. Multirate
folding provides a vehicle for systematically designing improved architectures

for multirate DSP algorithms.
o Register Minimization

— Single-rate register minimization: Expressions are derived for computing the
minimum number of registers required to implement a statically scheduled
single-rate DSP algorithm [46]. To the best of our knowledge, no such expres-
sions existed prior to this work. Expressions are derived for three different
memory models. These expressions can be used in CAD tools to evaluate
the quality of schedules with respect to memory requirements. For example,
these expressions are used along with our exhaustive scheduling technique to

determine the schedules which require the minimum number of registers.

— Multirate register minimization: Expressions are derived for computing the
minimum number of registers required to implement a statically scheduled
multirate DSP algorithm. This novel approach to evaluating memory re-
quirements allows for the design of memory-efficient single-rate architectures

for the implementation of multirate DSP algorithms.




1.3 Outline

This thesis is organized as follows. The exhaustive retiming and scheduling algorithms
are developed in Chapter 2. This chapter also provides a background information on
retiming and folding. Register minimization for statically scheduled single-rate data-flow
graphs is considered in Chapter 3. Chapter 4 contains the derivation of the multirate
folding transformation, including the work on retiming for multirate folding and register
minimization for folded multirate DSP algorithms. The two-dimensional retiming tech-
niques are derived in Chapter 5, and conclusions and suggestions for future research are

presented in Chapter 6.



Chapter 2

Exhaustive Retiming and
Scheduling

2.1 Introduction

Time scheduling and retiming [27] are important tools used to map behavioral descrip-
tions of algorithms to physical realizations. These tools are used during the design of
software for programmable digital signal processors (DSPs), during high-level synthesis
of applications-specific integrated circuits (ASICs), and during the design of reconfig-
urable hardware such as field-programmable gate arrays (FPGAs). Time scheduling and
retiming operate directly on a behavioral description of the algorithm, such as a data-
flow graph (DFG). Since the decisions made at the algorithmic level tend to have greater
impact on the design than those made at lower levels, the importance of time scheduling

and retiming cannot be overstated.

This chapter presents new formulations of the time scheduling and retiming problems,
and based on these formulations, new techniques are developed to determine the solu-
tions to these problems [31]. (From this point forward, we shall refer to time scheduling
as simply scheduling.) These formulations are valid for strongly connected (SC) graphs,

where a strongly connected graph has a path v ~ v and a path v ~ u for every pair of




nodes u, v in the graph. We focus on strongly connected graphs because these graphs
traditionally present the greatest challenges when they are mapped to physical realiza-
tions due to the feedback present in the graphs. An example of a strongly connected
DFG is the fifth-order wave digital elliptic filter [47] in Figure 2.18 which is commonly

used as a benchmark for demonstrating high-level synthesis techniques.

Scheduling consists of assigning execution times to the operations in a DFG such
that the precedence constraints of the DFG are not violated. A great deal of litera-
ture exists on the topic of scheduling in the context of high-level synthesis for ASIC
design for DSP applications (7] -[26]; however, none of these works gives a formal def-
inition of scheduling along with systematic techniques for exhaustively generating the
solutions to the scheduling problem. This chapter presents new scheduling formulations
and algorithms for exhaustively generating the solutions to the scheduling problem. Two
scheduling problems are considered, namely, scheduling for time-multiplexed execution

on bit parallel architectures and scheduling for execution on bit-serial architectures.

Retiming consists of moving delays around in a DFG without changing its function-
ality. As with scheduling, there is a huge body of literature on retiming, and new
applications for retiming are constantly being found. For example, due to the recent
demand for low-power digital circuits in portable devices, some recent work has focused
on retiming for power minimization [48]. The groundbreaking paper on retiming [27)
describes algorithms for tasks such as retiming to minimize the clock period and retim-
ing to minimize the number of registers (states) in the retimed circuit. An approach to
retiming which is based on circuit theory can be used to generate all retiming solutions
for a DFG [30]. This approach was the motivation for our work on exhaustive scheduling.
In this chapter, we show that retiming is a special case of scheduling, and consequently,

the formulation of the scheduling problem and the techniques for exhaustively generating




the scheduling solutions can also be applied to retiming.

The impact of the formulations derived in this chapter are as follows.

* The interaction between retiming and scheduling is important [11], and our formu-

lations give a simple way to observe this interaction.
e We show that retiming is a special case of scheduling.

e We give solid mathematical descriptions of the scheduling and retiming problems

in a common framework.

e We develop techniques for generating all solutions to a particular scheduling or
retiming problem. This allows a developer the ability to search the design space
for the best solution, particularly when various parameters are difficult to model
and include in a cost function. This has applications to software design, ASIC

design, and design for reconfigurable hardware implementations.

« Our formulations provide for a better understanding of scheduling and retiming

which can be used to develop new heuristics for these problems.

Many of the results in this chapter rely upon graph theory. Section 2.2 gives a review
of some results from graph theory along with the derivation of an algorithm for finding
the independent loops in a strongly connected directed graph. Our formulations for
scheduling to bit-parallel and bit-serial architectures are given in Section 2.3 along with
an explanation of how retiming can be viewed as a special case of scheduling. Section 2.4
contains the description of a systematic technique used to exhaustively generate the
scheduling and retiming solutions. Section 2.5 describes two techniques for exhaustively

generating the schedules which satisfy a given set of resource constraints for a bit-parallel




architecture. Section 2.5 includes the results of scheduling the fifth-order wave-digital
elliptic filter in Figure 2.18 with and without resource constraints. Our conclusions are

given in Section 2.6.
2.2 Introduction to Graph Theory

This section provides a brief introduction to graph theory followed by an algorithm
for finding the independent loops in a strongly connected directed graph. Most of the

definitions and results in Sections 2.2.1 and 2.2.2 can be found in [49].

2.2.1 Basic Definitions

We are concerned only with directed graphs. A directed graph G is represented as

G =< V,E,d,w >, where

e V is the set of vertices (nodes) of G. The vertices represent computations.

® E is the set of directed edges of G. A directed edge e € E from node u € V to
node v € V is denoted as u = v. The edges represent communication between the

nodes.

e w(e) is the number of delays on the edge e, also referred to as the weight of the

edge.

d(v) is the computation time of the node v.

A directed path vg 3 v; 3 ... °n3! Vn—1 3 vy, is denoted as vg ~ Upn. A simple path
is a path with distinct edges, and an elementary path has distinct nodes. A cycle is a

closed path (i.e., v, = vy,). A simple cycle has distinct edges and an elementary cycle has
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distinct nodes. An elementary cycle in a directed graph will be referred to as a “loop”

in this chapter.

A directed graph is strongly connected if for every pair of vertices u,v € V, there
exists a path u ~ v and v ~ u. A directed spanning tree is a subgraph of G which
has a root node vg and a path vg ~ v for all v € V except vg. The directed spanning
tree contains no cycles. If |[V| is the number of nodes in G, then a directed spanning
tree contains exactly |V| nodes and |V| — 1 edges. An edge of a directed spanning tree
is called a branch, and the edges of G not included in the tree are called links. Every

strongly connected graph contains a directed spanning tree.

An edge e from u to v (u = v) is incident with vertices u and v. More specifically, e

is incident from u and incident into v.

The set operations such as union, intersection, difference, complement, etc., are op-
erations on the edges of a graph. Let G, and G} be two subgraphs of a connected graph
G. G4 UGy consists of all edges in G, or G, (or both) and the vertices incident with
these edges. G — G, is formed by removing all edges in G, from G, and then removing

all vertices with no incident edges.

2.2.2 Matrix Representations

A strongly connected graph contains exactly |E| — [V| + 1 linearly independent loops
(this is shown in Section 2.2.3). Let B be the fundamental loop matriz. This matrix,

which has dimensions (|E| — |V| + 1) x |E|, is defined as

b = 1 if edge j is in loop ¢
Y71 0 otherwise '

Each row of B represents one of |E| — |V| + 1 linearly independent loops in B.

Let A be the oriented incidence matriz of G. This matrix, which has dimensions

11




|V| x |E|, is defined as
1 ej is incident from v;
aij =4 —1 e; is incident into v;
0  e; and v; are not incident

and rank(A) = |V| — 1. The reduced oriented incidence matriz Ay is defined to be any

[V| — 1 rows of A. Ap has dimensions (|V| - 1) x |E| and rank(Ag) = |V| - 1.

‘Two important relationships between the fundamental loop matrix and the oriented

incidence matrix are BAT = 0 and BAZT = 0.

Example 2.1 Consider the directed graph in Figure 2.1. This graph has siz nodes and
nine edges (V| = 6 and |E| = 9). The branches of a directed spanning tree are shown
with solid lines and the links are shown with dashed lines. The spanning tree contains
[V =1 edges and |V| nodes. One possibility for the ((IE|=VI+1)x |E]) =(4x9) B

matriz is

_—— O

B = , (2.1)

OO O =
DO =
= O O O
O -0 O
O OO =
_ O = O
O = O O
= O O O

0

whose columns and rows appear according to the numbering of the edges and loops, re-

spectively, in Figure 2.1. A is the ([V| x |E|) = (6 x 9) matriz

[1 0 0 0 0 -1 0 0 01
0 -1 1 0 0 1 0 -1 0
A—|=-t 1 0 1 0 0 -1 0 o0
00 0 0 -1 0 0 1 0
0 0 -1 0 1 0 1 0 -1
L0 0 0 -1 0 0 0 0 1 |

The reader can verify that rank(A) = |V|—1 = 5 and BAT = 045¢. One possible reduced

incidence matriz is the ((|V| — 1) x |E|) = (5 x 9) matriz

0 -1 1 0 0 1 0 -1 0
-1 1 0 1 0 0 -1 0 0
AR=|0 0 0 0 -10 0 1 0 |, (2.2)
0 0 -1 0 10 1 0 -1
0 0 0 -1 0 0 0 0 1




which is simply A with the the first row (the row corresponding to node 1) removed. The

reader can verify that rank(Ag) = |V| — 1 =5 and BAT = 04s.

Figure 2.1: A strongly connected graph. The branches of a spanning tree are shown with
solid lines, while the links of the corresponding cotree are shown with dashed lines.

2.2.3 Finding the Independent Loops of a Strongly Connected Graph

Recall that the fundamental loop matrix B has |E| — |[V| + 1 rows, each of which corre-
sponds to an independent loop. This section gives an algorithm for finding |E| — |V|+ 1
independent loops of a strongly connected graph. Let Gt be a directed spanning tree of
G, where vg is the root node of G, i.e., there is a path vp ~ v forallv € V except vp.

Algorithm FFL (Find Fundamental Loops) is given below.
Algorithm FFL (Find Fundamental Loops)

Gy =vp;

FOR (k=1 TO |E| - [V]+1)

{
STEP 1: Iy = a link in (G —GY%)) which is incident to G¥;
STEP 2: loop(k) = A loop in G’TUG(}? Ul which contains [i;
STEP 3: G = GVU 100p(k);

The [E|~|V|+1 loops denoted as loop(k), 1 < k < (|E|—|V|+1), are the fundamental
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loops of G.

Algorithm FFL maintains a subgraph G which initially consists of the root node
of the directed spanning tree Gr. During iteration k, a link I; in (G - G%c)) which is
incident into a node in G%C) is chosen in STEP 1. This link, along with edges in GTUG%C),

form a loop which we denote as loop(k). G%c) is then updated at the end of the iteration.

To prove that Algorithm FFL works, we need to show that link l in STEP 1 exists
for each iteration 1 < k < (|E| - |V|+ 1), and we need to show that loop(k) in STEP 2

exists for 1 < k < (|E| - [V| +1).

The following three lemmas are used to prove that link I, exists in STEP 1 of Algo-

rithm FFL.
Lemma 2.1 G%c) is strongly connected (SC).

Proof: By induction. G(Rl) = vp is SC. Assume that G(,f) is SC. Each vertex in (G(Ifﬂ) -

G%c)) is part of loop(k) which has at least one vertex in Gg), S0 G%“H) is also SC. O

Lemma 2.2 For every node v in G’(If) except vR, there is a branch of Gr in G(;f) which

1s incident into the node v.

Proof: By induction. This holds for G(Rl). Assume this holds for Gg). All edges of
loop(k) are in Gr UG UL Since G+ = G%¥)U loop(k), all edges in (GE*Y — G
except [; are tree branches. Since {; is incident into a node in Gg), each node in G%“’Ll)
but not in G(,f) must have a tree branch in G%"H) incident into it. So every node in

G%CH), except vg, has a tree branch in G%CH) incident into it. O

'The following lemma uses the result of Lemma 2.2.
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Lemma 2.3 There are no branches of Gr in (G — Gg)) which are incident to a node

n G’(F’f).

Proof: By contradiction. Assume a branch exists in (G — ch)) which is incident into
the node v in G%c). Then v must have two incident branches because we know from
Lemma 2.2 that there is also a branch in G%‘) which is incident into v. However, no
node can have two incident branches because multiple paths vg ~ v would exist in Gr,

which is not allowed. O

Lemma 2.1 and Lemma 2.3 are used to prove that I, exists in STEP 1 of Algorithm

FFL.

Theorem 2.4 Link Iy in STEP 1 of Algorithm FFL ezists for all iterations 1 < k <
(1E| = V] +1).

Proof: (G — G’(,f)) contains exactly |E| — |V| + 2 — k links at the start of iteration k, so
(G - G(,f)) contains at least one link during each iteration. Consider the following two

cases:

1. There exists a node v € V which is not in G(,f), i.e., no edges in G’(,f) are incident
into or from v. Since G is SC, there is a path from v to vg, implying that there is a
path from v to Gg). According to Lemma 2.3, there are no branches in (G — G(ff))
which are incident to a node in G(k), so there must be a link in (G — G%c)) which

(If)

is incident into G}’ allowing a path to exist from v to Gg).

2. Gg) contains all nodes. Each link in (G - Gg)) is incident into G’g) in this case.
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The following theorem uses Lemma 2.1 to show that loop(k) in STEP 2 exists for

1<k < (B - [V]+1).
Theorem 2.5 There is a loop containing Iy, in Gr U G%c) Ulg.

Proof: Consider Figure 2.2. Nodes vp and vy are in G%c). Link I is in (G - G(If)).
Path p, exists in G%C) because G(,f) is SC (according to Lemma 2.1). Path p; exists
in Gt because vp is the root of the directed spanning tree. So a directed cycle vy E)
VIN ~ Up ~ Dy exists in G U G(,é') U lg. If this directed cycle is not clementary, then it
must have the form vy E} VIN ~* YCOMMON ~* VR ~» VCOMMON ~* VX, from which the

. l
clementary directed cycle (loop) vy = viny ~ vcommon ~ vx can be found. O

Figure 2.2: A directed cycle created by adding link I which goes from (G — G(If)) to
G,

We construct the fundamental loop matrix B by letting loop(k) from Algorithm FFL
be the k-th row of B. The edges in the graph are numbered such that the first (|V| — 1)
columns of B correspond to the branches of the spanning tree of G, and the remaining
(IE|=|V|+1) columns correspond to the links. The link [y, is assigned to the (|V|—1+k)-
th column of B. By constructing the fundamental loop matrix in this manner, it has the
form

B=[c | L], (2.3)
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where C is an (|E|-|V[+1) x (|V|-1) matrix and L is an (|E|— |V |+1) x (|E| = |V |+1)
lower triangular matrix with ones on the diagonal. Note that the columns of L correspond

to the links of G' while the columns of C correspond to the branches of G. Because of

its form, B has rank (|E| — |V]| + 1).

It can also be shown that adding more loops of G to B (adding a loop would consist
of adding a row to B) does not increase its rank. Therefore, the (|E| — |V| + 1) rows of

B form a basis for the loops of G.

Example 2.2 This ezample uses Algorithm FFL to form the fundamental loop matriz
for the graph in Figure 2.1. The spanning tree with node 1 as the root node is shown in
Figure 2.3(a). At the start of Algorithm FFL G(,;) is node 1. During iteration k = 1, the
only possibility for link 1, is edge 6. The only possibility for loop(1) is 1 L33o5.
G(,?) is circled in Figure 2.3(b). During iteration k = 2, there are two possibilities for link
ly, namely, edges 7 and 8. Choosing edge 7 as ly results in loop(2) = 3 393503
G(,:g) is circled in Figure 2.3(c). During iteration k = 3, the two possibilities for link I
are cdges 8 and 9. Choosing edge 8 as l3 results in loop(3) = 2 3554849 G(,g)
is circled in Figure 2.3(d). During iteration k = 4, link ly is edge 9, and loop(4) is

3562553 The fundamental loop matriz is

oo O -
O O b
[l ™)
_ O O O
O = OO
oo o~
=0 = O
O = OO
_ O o

Note that B has the desired form as given in (2.8). Row k corresponds to loop(k) from

Algorithm FFL and column i corresponds to edge i of G.




(c) (d)

Figure 2.3: The four steps of Algorithm FFL which finds the four fundamental loops of
the graph shown in Figure 2.1. For each iteration k, the subgraph G(,-f) is circled.

2.3 Scheduling and Retiming Formulations

Time scheduling (or simply scheduling) consists of assigning execution times to the oper-
ations in a DFG such that the precedence constraints of the DFG are not violated. This
section considers two scheduling problems, namely, scheduling to a time-multiplexed
bit-parallel target architecture (we call this bit-parallel scheduling) and scheduling to a
bit-serial target architecture (we call this bit-serial scheduling). It turns out that the
bit-parallel and bit-serial scheduling formulations are quite similar, and the retiming

formulation is a special case of bit-parallel scheduling.
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2.3.1 Bit-Parallel Scheduling

In bit-parallel scheduling, a DFG is statically scheduled to a bit-parallel target archi-
tecture. The scheduling formulation presented in this section is based on the folding
equation developed in [28]. Folding is the process of executing several algorithm oper-
ations on a single hardware module. Scheduling is the process of determining at which

time units a given algorithm operation is to be executed in hardware.

Before the scheduling formulation is developed, we nced a brief description of retiming,

The basic retiming equation for the edge u > v is (27]
wr(e) = w(e) + r(v) — r(u), (2.4)

where w(e) is the number of delays on the edge before retiming, wy(e) is the number of
delays on the edge after retiming, and r(u) and 7(v) are the retiming values of nodes u

and v, respectively.

The notions of an iteration and an iteration period are used in this section. An
iteration is defined as the execution of each node in the DFG exactly once. The iteration
period is defined as the number of clock cycles used to execute one iteration of the DFG

in hardware.

Consider an edge e from node u to node v, denoted as u 5 v. The operations (nodes)
in the DFG are scheduled to be executed in the folded architecture once every N clock
cycles, where N is the iteration period. Let the [-th iteration of nodes u and v be
executed in hardware at time units NI + p(u) and NI + p(v), respectively, where p(u)
and p(v) are the time partitions to which the nodes are scheduled to execute such that
0 < p(u),p(v) < N —1. Let edge e have w,(e) delays, which means that the result of the
[-th iteration of node u is used by the (! + w,(e))-th iteration of node v. The hardware

modules which execute nodes u and v are denoted as H, and H,, respectively. If H,, is
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pipelined by d(u) stages, then the result of the I-th iteration of node u is available at
Nl + p(u) + d(u). This sample is used by the (I + w,(e))-th iteration of node v, which is

executed by H, at N(I + wr(e)) + p(v), so the sample must be stored for
fle) = N(l +w,(e)) + p(v) — (Nl + p(u) + d(u)) = Nw,(e) — d(u) + p(v) — p(u)

clock cycles. Substituting for w,(e) using (2.4) gives

f(e) = Nw(e) — d(u) — N(r(u) - r(v)) — (p(v) — p(v)). (2.5)

The edge u 5 v with w(e) delays in the DFG maps to an edge from H, to H, with fe)
delays in the architecture, and the data on this edge are switched into H, at time units

NI+ p(v).

Note that we assume that the hardware module H,, is pipelined by d(u) delays, where
d(u) is the computation time of the node u in the DFG. If we define an |E| x 1 vector
d, whose i-th clement is the computation time of the source node of edge ¢ (the source
node of an edge is the node that the edge is incident from), then the folding equation

can be written for all |E| edges of the DFG simultancously using
f=Nw-d, - AT(p+ Nr), (2.6)

where A is the |V| x |E| incidence matrix for the graph G (see Section 2.2.2), p is the
[V|x1 time partition vector which assigns node i to the time partition p; (0 < p; < N-1),
r is the |V| x 1 retiming vector with the retiming values of the nodes in G, w is |E| x 1
and contains the number of delays on each edge of G, f is the |E| x 1 folding vector
which contains the number of delays on each edge of the folded architecture, and d, is
the |E| x 1 delay vector as previously described. This formulation of folding is general
because it relies upon the retiming solution r and the time partition vector p. One way

to view this is that the DFG is preprocessed using retiming (hence the r vector) and
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then scheduling is perfomed on the retimed DFG (hence the p vector). Combining r and
p using s = p + Nr results in the schedule vector s. Using s, the scheduling problem can

be written as

ATs=Nw-d, -f. (2.7)

The rank of the |V| x | E| incidence matrix A is |V|—1. Therefore, the left nullspace of
A must consist of a vector x which satisfies ATx = 0||x1- We can see that x = 1y,
because each column of A contains exactly one entry which is a 1, one entry which is a

-1, and the remaining entries of the column are zero.
Using AT11V|X1 = 0g|x1 we can write
AT(s+k1)=Nw-—d, —f,

which means that adding the constant & to each element of the schedule vector does not

change the number of delays on the edges of the folded architecture.

The incidence matrix A can be written as
T
A= [ a ay - aM ] .

The reduced incidence matrix consists of any |V]| — 1 rows of A. Removing row m of A

results in
T
AR=[81 az -+ @mo] Amyp a]V|] : (2.8)

The reduced incidence matrix A g has dimensions (|V| — 1) x |E| and rank |V| — 1. The

reduced scheduling vector is defined as
T
SR = [ S1 82 't Sm—l Sm+l "t S|y ] ) (2.9)

which can be written as sg = pr + Nrg, where pr and rg are the time partition vector

p and the retiming vector r with the m-th elements removed. Using A g and sp, we can
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write

ATs = s(m)a,, + Alsp.

Substituting this into (2.7) results in

Alsp = Nw—d, - f — s(m)ay,. (2.10)

Node m is called the reference node. Since replacing s by s' = s + k1 does not alter
the resulting folded architecture, we can choose k = —s(m) so s'(m) = 0. After replacing

s with 8’ = s — s(m)1, (2.10) becomes A%sl, = Nw —d, - f.

Throughout the remainder of this chapter, we will assume that s’ = s — s(m)1 so
s'(m) = 0. In an abuse of notation, we will refer to s’ simply as s so that (2.7) can be

written as

Alsp=Nw-d,-f. (2.11)
Lemma 2.6 The cquation (2.11) can be solved for sp if and only if B(Nw —d,,) = Bf.

Proof: The equation (2.11) has a solution if and only if Nw —d,, — f is in the |V] — 1
dimensional row space of A . Equivalently, (2.11) has a solution if and only if Nw—d, —f
is perpendicular to the |E| —|V|+1 dimensional nullspace of A g because the nullspace is
the orthogonal complement of the row space in RI€!. Since BAE = 0 (see Scction 2.2.2),
the |E| — |[V| + 1 rows of the fundamental loop matrix B form a basis for the nullspace

of Ag. Therefore, (2.11) has a solution if and only if B(Nw —d, — f) = 0. O
To understand the meaning of B(Nw — d,, — f) = 0, we begin by writing B as
T
B=[b by - by |

such that b} is the i-th row of B. Using this, B(Nw — d, — f) = 0 implies b7 f =

b7 (Nw —d,). Recall that bij; = 1 if edge j is in loop 7 and b;; = 0 otherwise. Therefore,
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b7f is the total number of folded delays on loop i, and bl (Nw —d,) is a constant that
depends on G. The equation bYf = bl (Nw — d,) states that the number of folded
delays on loop 7 is the same for any legal folding vector f, and B(Nw-d,-f) =0
implies that this is true for all |E| ~ [V| + 1 independent loops of G represented by
the rows of B. Furthermore, the sum of the number of folded delays for all edges and
pipelining delays associated with all nodes of a loop is the product of the folding factor,
N, and the number of loop delay clements, as noted in [28]. It can also be shown that
this holds for the dependent loops of G, i.e., the number of folded delays on each loop

of G that is not represented by a row of B is the same for any legal folding vector f.
If B(Nw — d,) = Bf holds, (2.11) has exactly one solution for sg, which is given by
sp = (ApAL)'AR(Nw —d, - f). (2.12)

The above discussion can be summarized by saying that the number of folded delays on

cach loop in G is the same for any valid schedule s.

In addition to the condition B(Nw — d,) = Bf there is also the practical condition
that the number of delays on an edge in the folded architecture must be nonnegative.

This condition can be written as £ > 0. The constraints for a valid schedule are

1. B(Nw —d,) = Bf

2.f>0.

2.3.2 Retiming

Retiming is the process of moving delays around in a circuit without changing the func-
tionality of the circuit [27]. A brief description of retiming is given at the beginning of
Section 2.3.1. This section describes how retiming can be viewed as a special case of

bit-parallel scheduling.
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The folding equation for a graph G is given in (2.6). If each node in G represents a
hardware operator, then all operations in the graph are executed in a single clock cycle
resulting in an iteration period of N = 1. The elements of the time partition vector p
are all zero because time partition zero is the only available partition. If we let d,, = 0,

i.e., we do not consider any internal pipelining of the operators, (2.6) becomes
f=(1)w-0-AT(0+1r)
which simplifies to
f=w-ATr. (2.13)
Since f is the number of delays in the folded architecture, f is equivalent to w, for N = 1,
5o (2.13) becomes
w,=w— AT, (2.14)
which is simply the matrix notation for writing (2.4) simultaneously for all edges of the

graph. This demonstrates that retiming is simply scheduling when the iteration period

is unity.
Using ATIM)“ = 0ypx1, (2.14) can be written as
AT(r+ k1) = w — w,.
If r is a retiming vector which maps the graph G to the retimed graph G,, then so is

(r + k1) for any integer k.

In the context of retiming (i.e., assuming N =1, p =0, d, = 0, and f = w,), (2.11)
can be written as

Afrp=w—w,. (2.15)

Recall that (2.11) assumes that s(m) = 0. Since s = Nr + p and p = 0 is assumed to

obtain (2.15), this implies that 7(m) = 0 in (2.15). In other words, the retiming value

of the reference node is 0 in this formulation.
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The translation of Lemma 2.6 to the retiming context is that (2.15) has a solution if
and only if Bw = Bw, holds. This implies that the number of delays on any loop in G
remains unchanged during retiming, as noted in [27]. If Bw = Bw, holds, (2.15) has

exactly one solution for rp, which is given by

rr = (ARAR) 'ARp(w — w,). (2.16)

In addition to the condition Bw = Bw,, there is also the practical condition that the
number of delays on an edge in the retimed graph must be nonnegative. This condition

can be written as w, > 0. The condition for a valid retiming from G to G, are

1. Bw = Bw,

2. w,. 2> 0.

2.3.3 Bit-Serial Scheduling

In this section, a scheduling formulation is developed where the target architecture is a
bit-serial architecture. This formulation, which is similar to the formulation in Chap-
ter 6 of [50], has the same general form as the retiming and the bit-parallel scheduling

formulations in Sections 2.3.1 and 2.3.2.

A bit-serial operator is often represented using a timing diagram such as the one in
Figure 2.4. Let the execution of operator A in this figure begin at time T4. The first
bit of each of the inputs z,, 27, and z3 arrives at time units T4 + t(z1), T4 + t(z32), and
T4 + t(z3), respectively. The first bit of each of the outputs y; and y, is produced at
time units T4 + t(y;) and T4 + ¢(y2), respectively. In other words,. the timing diagram
gives the relative differences between the timing of the input and output samples of the

operator.
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Figure 2.4: The timing diagram for the bit-serial operator A.

Example 2.3 For the bit-serial adder in Figure 2.5(a) which computes F = A+ B, the
timing diagram is shown in Figure 2.5(b). Note that W is the wordlength.

A —d _+~s——{::}——. F A

B ——

0
[ |
PO
B
Wi+0

0

(a) (b)

Figure 2.5: (a) The architecture for a bit-serial adder for wordlength of W. (b) The
timing diagram for this architecture.

The constraints for the bit-serial scheduling problem can be derived using the timing
diagram. Consider the edge u = v with w,(e) delays in Figure 2.6. The output of
iteration [ of u is used as the input of iteration | + w,(e) of v. Let the I-th iteration
of nodes u and v begin execution at time units W1 + p(u) and W1 + p(v), respectively,
where W is the data wordlength and p(u) and p(v) are the time partitions to which the
nodes are scheduled to execute such that 0 < p(u),p(v) < W — 1. The output of the I-th
iteration of u is available at W1+ p(u) + t(u) and the output of the [ + w,(e)-th iteration

of v is consumed at W (I + w,(e)) + p(v) + t(v), so the result must be stored for

b(e) = W (l+wr(e)) +p(v) +{(v) = [Wi+p(u) +t(u)] = Wuw(e) - (¢(u) - t(v)) +p(v) — p(u)

clock cycles.




t(u) t(v)

Figure 2.6: An edge u = v with w,(e) delays.

This equation can be written for all |E| edges of the graph simultaneously according

to

b=Ww, — (t, — t,) — ATp, (2.17)
where
e A is the incidence matrix for the graph.

e p is the time partition vector which assigns node 4 to the time partition p; where

0<pi<W-1
e t, is defined such that ¢, is the value £(-) at the source of edge ¢ in the graph.
® t, is defined such that t,, is the value ¢(-) at the sink of edge i in the graph.
e w; contains the number of delays on each cdge of the retimed DFG.

e b contains the number of serial delays on cach edge of the hardware implementa-

tion.

The bit-serial folding cquation (2.17) operates on the retimed DFG G,. Substituting

(2.14) into (2.17) results in
b=Ww— (t, —t,) - AT(p + Wr).
Combining r and p using s = p + Wr results in

ATs = Ww - (t, — t,) — b.
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This equation can be rewritten as
Alsp =Ww — (t, — t,) — b, (2.18)

where Ap and sg are defined as in (2.8) and (2.9), and the scheduling value for the

reference node is s(m) = 0.

Using the same argument as in Lemma 2.6, it can be shown that the bit-serial schedul-
ing equation (2.18) has a solution if and only if B(Ww — (t,, — t,)) = Bb. The equation
B(Ww — (t, — t,)) = Bb states that the sum of the serial delays in any loop of the
hardware implementation is the same for any valid serial delay vector b. In addition,
the sum of the number of serial delay elements of all edges and latencies associated with
all nodes in a loop is the same as the product of the word-length and the number of loop

delay clements.

A sccond constraint, b > 0, exists because a connection in hardware cannot have a

negative number of delays. The constraints for a valid bit-serial schedule are

1. B(Ww — (t, - t,)) =Bb

2.b>0

The value of the schedule vector s can be found using

sr = (ARAT) 'AR(Ww — (t, — t,) — b). (2.19)

2.4 Generating All Scheduling and Retiming Solutions
2.4.1 Generating All Bit-Parallel Scheduling Solutions

Based on the two constraints B(Nw —d,) = Bf and f > 0, all scheduling solutions for a

strongly connected DFG can be generated. A systematic technique for generating these
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solutions is presented in this section.

Recall that B is the fundamental loop matrix which can be expressed as B =
[ C | L ], where C is an (|E] - |V]| + 1) x ([V| = 1) matrix and L is an (|E| —
[V]+1) x|E{ - |V|+1) lower triangular matrix with ones on the diagonal. The columns
of C correspond to the branches of the spanning tree of G which is chosen before Algo-
rithm FFL is used to find B, and the columns of L correspond to the links of G. The

rows of B correspond to (JE| — |V| + 1) linearly independent loops in G.

The algorithm for generating all scheduling solutions requires an interval to be written
for the folded weight of cach branch of G' and an equality to be written for the folded
weight of each link of G. The interval for the folded weight of a branch gives the range of
possible values for the number of folded delays for this branch in the folded architecture.
The equality for the folded weight of a link gives an expression for the number of delays
for the link in the folded architecture. Using these intervals and equalities, code can be

constructed to gencrate all possible scheduling solutions.

To determine these intervals and equalitics, the elements of the fundamental loop
matrix are examined one-by-one in a row-by-row manner, starting at the top-left of the
matrix. Each time a “1” is encountered in the C submatrix of B such that this “1” is the
first “1” encountered in its column, an interval is specified for this branch. This interval,
which represents the range for the number of folded delays for the branch in the folded
architecture, takes into account the intervals and equalities previously determined in the

row-by-row scan of B.

Assume that the first “1” in column n of C is in row m, i.e., bypn = 1 and by, = 0 for all
I < m. Let bl denote any row of B such that by, = 1, i.e., loop(k) is a fundamental loop

that contains the edge n. Since by, is the first “1” in column n, m < k < |E] — V] +1

29




must hold, i.e., b, is in row m or in a row which is below row m. From Bf = B(Nw-d,),
we get
bif =bf(Nw—d,) = ¥ by;f; = bl (Nw—d,) = fo+ > beifj =bL(Nw—d,).
JEE JEE—{n}

(2.20)
Let D denote the set of edges encountered before reaching the element by, in the row-
by-row scan of B. Mathematically, D is the set of edges j such that there exists an
element b; = 1 such that j+ (|E| - 1)i < n+ (|E| - 1)m. Using D, we can rewrite (2.20)
as

It Y bifi+ Y beifi =bl(Nw —d,). (2.21)

jeD JEE-D—{n}

The intervals and equalities for the edges in the set E — D — {n} have not yet been
determined; however, we do know from f > 0 that ZjeE—D—{n} bijfi > 0. Using this in

(2.21) results in

fa+ Y bijfi <L (Nw —d,).
jeD
Using this along with f > 0 specifies the interval for f,

0< fa <bL(Nw—dy) - > besfy, (2.22)
JjeD

which must hold for all k such that b, = 1.

Because the matrix L in B = [ C | L ] is lower triangular with ones on the
diagonal, the diagonal element of row m, lm, is always the first “1” encountered in
column m of L during the row-by-row scan of B. In addition to using lmm to denote this
element, it can also be denofed as by, where n = V| —1+m. When b,,, is encountered
in the row-by-row scan of B such that n = |V| — 1 + m, an equality is written for f,
based on the equation bLf = bl (Nw — d,). This equality, which uses the fact that

the intervals and equalities have already been determined for all edges in loop(m) except
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edge n, is

fo=bL(Nw —d,) ~ > bmjfj. (2.23)
jeD

To summarize the above discussion, the matrix B is scanned in a row-by-row manner
starting with b; ;. When b,,, = 1 is encountered, if by, is the first “1” in its column
of C, the interval in (2.22) is written for all k such that by, = 1. When byn = 1 is

encountered where n = |V| — 1 + m, the equality in (2.23) is written.

The intervals for the |V| — 1 branches of G are denoted as Z; for 1 < j < V| - 1.
An algorithm for writing these |V| — 1 intervals for the branches and the |E| — [V + 1
equalitics for the links is given below. At any point in this algorithm, D is the set of

edges in G whose intervals or equalities have previously been determined.

Algorithm IE (Intervals and Equalities)

D ={};
FOR (m=1TO |E| - |V]| +1)
{
FOR (n=1TO |E| - 1)
{
IF (bmn = 1 AND by, = 0 Vk < m)

{
IF(1<n<|V|-1)

I, = [0,min {o(m,n),o(m + 1,n),0(|E} — |V| + 1,n)}];
D« D+ {n};

}

ELSE

{
fo= bﬁ(NW —d,) - ZjeD bmjfj?
D < D + {n};

}

}
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where

o'(k n): b{(Nw—du)_ZjeDbkjfj ifbk=].
’ o0 otherwise

From the intervals and equalities, code can be written to enumerate all possible

scheduling solutions. The general structure of the code is:

1. Write FOR loops for the intervals and write assignment statements for the equali-

ties in the same order that these intervals and equalities are generated in Algorithm

IE.

2. Test the link weights for non-negativity. If the link weights pass this test, the edge

weights represent a valid scheduling solution.

This technique generates all possible scheduling solutions because the FOR loop for
branch m assigns f,, every integer value which is legal under the constraints Bf =
B(Nw —d,) and f > 0, while taking into consideration the values of f; which are

already contained in a FOR loop or an assignment statement.

Example 2.4 In this ezample, we find all scheduling solutions for the DFG in Figure 2.7
assuming an iteration period of 4 and assuming that the computation time for each node

18 unity.

T
Nw—du=[—1 3 -1 -1 -1 -1 -1 3 3]
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Figure 2.7: The data-flow graph used in Example 2.5.

andA
[ f(1) ]
f(2)
110001000 thgg
011000100
Bf=BWNw-dui)= 190630100010 %2;
000100101
f(7)
f(8)
L f(9) |
Using Algorithm IE gives the intervals and equalities
I, =10,1) D = {1}
I, =1[0,1-fi] D = {1,2}
fe=1—fi—fa D ={1,2,6}
I3 = (0,1 — fo] D ={1,2,3,6}
f7_1_'f2_f3 D={11273,677}
Is = [0,1 - f3) D ={1,2,3,5,6,7}
f8=1_f3_f5 D={152’ ’5a65778}
Iy =[0,1-f;] D=1{1,23,4,5,6,7,8}

The code for finding all scheduling solutions is

for (f1 = 0; £f1 <= 1; f1++)
for (f2 = 0; £2 <= 1 - f1; £2++)
{

f6 = 1 - f1 - £2;
for (£3 = 0; £3 <= 1 - £2; f3++)

{

f7 =1 - £f2 - £3;
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Table 2.1: The twelve valid scheduling solutions for the DFG in Figure 2.7.

ISOI’H#”fl|f2|f3|f4,fSIfG'f?'fSIfB“SIl32|33|54|35|36|

1 ojojojojofr|1|1|ofo|[-2[1]O0]-172
2 O(ofojo|1{1|1{O0|O0O}O|-2[1]1]-1]2
3 oOjojryo0jojrjojoj1fo{2]11]1|01{2
4 oyoj1rjrjo{1|o0f|o|oOofof-2]{1}{1]0|3
5 o(1io0jo0jojojoO|1|L}O|-1|1]|1]o0]2
6 ofrj{oj1jojojo|tr]Joffoj-1]1{1]|0]|3
7 6(1{o0jo0oj1|0f|O0jO|1]O|-1|1]|]2]|0]2
8 oOj1(0|j1|1{0|0|O0O{OflO|{-1]1|2]|0]3
9 r1jyojojofojoj1rf1{ofo}-1}2{1]o0]s3s
10 1010|021 ]jo|1r]O0|OfoO|-1]2]|2|0]|3
11 lyojtrjojojojojo|tryo|-1]2)2|11{3
12 lLjojrjrjojojojojofoi-1{212|114

for (f5 = 0; £5 <=1 - £3; f5++)

{
f8 = 1 - £3 - £5;
for (f4 = 0; f4 <=1 - £7; f4++)
{
f9 =1 - f4 - £7;
if (£6 >= 0 AND £7 >= O AND £8 >= 0 AND £9 >= 0)
print the values of f1 through f9 and si through s6
}
}

There are twelve scheduling solutions for this DFG. The scheduling vector sp can be
computed from the folded edge vector f using (2.12). Using node 1 as the reference node,

the folded edge weights and the scheduling values for the nodes are listed in Table 2.1.

Once all possible f vectors have been found and the corresponding s vectors have been
computed using (2.12), the r and p vectors can be found from s (recall that s = p+Nr)
using r = |_Tf,-_| and p = s— Nr. It can be shown that these expressions for r and p result

in
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e 0 < p <N —1. This means that p; is indeed a time partition satisfying 0 < p; <

N -1

e w, > 0 and Bw = Bw,. This means that r is a valid retiming solution of G.

To summarize, the following four steps can be used to find all valid schedules for a

strongly connected DFG:

1. Find all vectors f such that f > 0 and Bf = B(Nw —d,).

2. Compute s using (2.12) and s(m) = 0, where m is the reference node.
3.r=|F%]

4. p=s— Nr.

These four steps give the valid schedules for G. The retiming vector r corresponds

to a valid retiming solution for G, and the elements of the partition vector p satisfy

0<p, < N-—-1.

For cach legal folding vector f, the technique in this section finds exactly one schedule
s, which contains information about the time partitions p and the retiming values r of
the nodes. However, there are actually N schedules which map the DFG to a folded
architecture which has f delays on its edges. We call these IV solutions equivalent sched-
ules, and we call the solution found using Step 2 above the fundamental schedule s of the
folding vector f. The N equivalent schedules are s + k1 for 0 < k < N — 1. Replacing
s by s + k1 has two effects. First, the switching instance Nl +j (0 < j < N-1) in
the folded architecture becomes NI+ ((j + k)modN). Second, if scheduling is viewed
as preprocessing the DFG by retiming (finding r) and then assigning time partitions

(finding p), the preprocessed DFG may change because r may change. A nice property
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of the technique presented in this section is that it finds the fundamental schedule s for

each folding vector f, and the N equivalent schedules are implicitly known to be s + k1

for0<k<N-1.
2.4.2 Generating All Retiming Solutions

Since retiming is a special case of scheduling, the techniques in Section 2.4.1 for gen-
erating all scheduling solutions can also be used to generate all rctiming solutions by

replacing f with w, and letting N =1 and d,, = 0.

Example 2.5 In this ezample, we generate the edge intervals and equalities for the graph
in Figure 2.7. The fundamental loop matriz for this graph is given in (2.1), the weight

vector s

w=[010000011]T,

T
and Bw = [ 1111 ] . The intervals and equalities are generated in the following

order using Algorithm IE.

I, =[0,1] D = {1}

Ty =[0,1 — wy,] D = {1,2}
Wrg = 1 —wy, — w, D ={1,2,6}

T3 =[0,1 - wy,] D = {1,2,3,6)
Wrp, =1 — Wy, — Wry D ={1,2,3,6,7}

Ty =[0,1-w,]  D={1,23567}
Wrg =1 —wr, —wr, D={1,2,3,5,6,7,8}

I;=[0,1-w,] D=1{1,2,3,4,5,6,7,8}
Wrg =1 —Wry —wp, D=FE

Using these intervals and equalities, the code which generates all retiming solutions
for the DFG in Figure 2.7 is given below. Note that xi is used to represent wr.,.

for (x1
for (x2

{

]
o
¥
[
A

i

= 1; x1++)
1 - x1; x2++4)

"
(=]
el
N
A

L}

x6 =1 - x1 - x2;
for (x3 = 0; x3 <=1 - x2; x3++)
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x7 =1 - x2 - x3;
for (x5 = 0; x5 <= 1 - x3; x5++)

{
x8 =1 - x3 - x5;
for (x4 = 0; x4 <= 1 - x7; x4++)

{
x9 =1 - x4 - x7;
if (x6 >= O AND x7 >= O AND x8 >= 0 AND x9 >= 0)
print the values of x1 through x9 and r1 through ré6

There are twelve retiming solutions for the DFG. The retiming vector r is computed
from the retimed weight vector w, using (2.16) and r(1) = 0, where node 1 is the refer-

ence node. The retimed edge weights and the retiming values for the nodes are listed in

Table 2.2.

If a DFG is not strongly connected, it is possible to add edges to the DFG to make it
strongly connected so all retiming solutions can be generated. Consider the biquad filter
in Figure 2.8(a). This graph is not strongly connected because, for example, there is no
path from the output node to the input node. To make this graph strongly connected,
it can be modificd by adding an edge from the output node to the input node as shown
in Figure 2.8(b). The modified graph has a new loop IN - OUT — IN which has one
delay. This loop forces the latency of the DFG to be one cycle. Using the techniques
presented in this section, we find that there are 224 retiming solutions for the DFG in

Figure 2.8(b).

As another example, consider the correlator in Figure 2.9 which is used to demonstrate
retiming in [27]. Using the techniques presented in this section, 143 retiming solutions

can be found for this DFG. This result was also reported in [30].
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Table 2.2: The twelve valid retiming solutions for the DFG in Figure 2.7.

-1

-1

| soln # [ w,, [ wr, [ wy, | Wry | Wrs | Wrg | Wry [ Wrg [ wy, |

10
11
12

[soln# [ ry [ro]rs re |75 | 76

1

10
11
12
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Figure 2.8: (a) The biquad filter. This graph is not strongly connected. (b) A modified
version of the biquad filter. This graph is strongly connected.

Figure 2.9: The correlator example which has 143 retiming solutions.

2.4.3 Bit-Serial Scheduling

Since the bit-serial scheduling formulation has the same form as the bit-parallel schedul-
ing formulation, the techniques used to generate all bit-parallel scheduling solutions can
be used to generate all bit-serial scheduling solutions by replacing f with b and replacing

Nw —d, with Ww — (t, — t,).

The values of r and p can be computed from s (recall that s = p+Wr) usingr = R4

and p = s — Wr. It can be shown that these expressions for r and p result in

e 0 < p £ N —1. This means that p; is indeed a time partition satisfying 0 < p; <

N -1

e w, >0 and Bw = Bw, if t, > t, for all edges u 5 v as shown in Figure 2.6. This
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means that r is a valid retiming solution of G when t, > t, for all e € E.

Example 2.6 In this ezample, we generate all possible schedules for the bit-serial im-
plementation of the third-order all-pole filter shown in Figure 2.10 assuming two’s com-

plement number representation, data wordlength is 8 (i.e., W = 8), and coefficient

wordlength is 4.

Figure 2.10: A third-order all-pole IIR filter.

The first step is to determine the timing diagram for each operator. The circuit and
timing diagram for an adder are given in Figure 2.5. The circuits and timing diagrams
for multiplication by —1/4, 1/8, and 1/2 are given in parts (a), (b), and (c), respectively,
of Figure 2.11. Using these sub-circuits, the timing diagram for the filter is shown in

Figure 2.12

The fundamental loop matriz is

10010100
B=|{010011T10
00100111
In addition, we have
T
w=[12300000],
T
tu=[11143111],
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Figure 2.11: The circuits and timing diagrams for the three multipliers in Figure 2.10.

and t, = 0. The equation B(Ww — (t, — t,)) = Bb is

10010100 2
0100111 0([b=]10
00100111 20

The intervals and equalities are

I = [0,2]

Iy =[0,2 - by)
be =2—b, — by
I, = {0, 10 — bs]

Ts = [0,10 — by — be]
by = 10 — by — bs — bg
T3 = [0,20 — bg — by]
bs = 20 — by — bg — by

There are 6103 valid scheduling solutions. To avoid ezamining all of these solutions,

let us ezamine only those solutions which use the minimum number of serial registers.

The number of serial registers is

D = max(by, by, b3) + by + bs + bg + by + bg.
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Figure 2.12: The timing diagram for the filter in Figure 2.10. The edge labels are shown
in parentheses to avoid confusion with the timing values.

The minimum number of registers for all 6103 valid scheduling solutions is Dy, = 20,

and there are 330 solutions which use 20 registers. One solution that uses 20 registers is

b

r T
000002810]

r T
0 -3 —12 -7 =15 —23]

jo -1 -2 -1 -2 —3]T

[054111]T.

The complete architecture for this solution is shown in Figure 2.13. This architecture

uses 20 registers, not including the registers which are internal to the processing units.

2.5 Bit-Parallel Scheduling with Resource Constraints

When all of the schedules are generated for a DFG, this may include many schedules

which require more hardware resources than are available for the implementation. In

this section, we describe two methods for finding the schedules which satisfy a given
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Figure 2.13: An architecture for the third-order all-pole filter. This architecture uses the
minimum number of registers (20), not including the registers which are internal to the
processing units.

set of resource constraints. In the first method (the solution-save method), we generate
all scheduling solutions and then save only the solutions which satisfy the resource con-
straints. In the second method (the solution-generate method), we only generate those

scheduling solutions which satisfy the resource constraints.

2.5.1 The Solution-Save Method

The number of hardware modules required by a scheduled DFG can be determined
from p. For example, let m, be the number of multiplication operations scheduled to
time partition n (0 < n < N — 1), and let a, be the number of addition operations
scheduled to time partition n. Then the number of multipliers required by the schedule

is m = maxo<n<n-1{mn} and the number of adders is a = maXo<n<N-1{0n}.
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Example 2.7 In this ezample we find all scheduling solutions which require 1 multiplier
and 1 adder for the biquad filter in Figure 2.8(b) assuming an iteration period of N = 4
and assuming that addition and multiplication require 1 and 2 units of time, respectively.
Nodes 1, 2, 7, and 8 are addition operations and nodes 3, 4, 5, and 6 are multiplication

operations.

The fundamental loop matriz is

10000O0O0O1O0O0O0CO
01 10000O0O1O0O0DO
B={000001110100
0001 000O0OT1O0T10
000010010101
T
and B(dw - d,) = [ 203 47 ] . The intervals and equalities are
7, =1[0,2]
fs=2-H

IQ=[0,0]=>f2 =0
1'3=[0,0—f2}=>f3=0
fo=0—fo—f3=fo=0
Ts = (0,3 — fg]

Ir = (0,3 - fs — f4
fio=2~fs—fr—fs

Iy = [0,4—f9]
fu=4-fi—fy

Is = [0,7 — fs — fio]
fiz=T~=fs — fs — fio

There is a total of 625 valid scheduling solutions for this ezample; however, only 6 of

these solutions use only 1 adder and 1 multiplier. Tables 2.8 and 2.4 give the details of

these solutions, and the DFGs for these siz solutions are given in Figure 2.14.

Example 2.8 Consider the 4-stage pipelined 8-th order all-pole lattice filter in Fig-
ure 2.15. Edge 11 has been added to this filter to make it strongly connected. For
the iteration period N = 2, this filter has 450 scheduling solutions, and 99 of these

schedules use 2 adders and 2 multipliers. Of these 99 schedules, the minimum possi-
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Table 2.3: The f and s values for the six valid scheduling solutions for the biquad filter
which use 1 adder and 1 multiplier for an iteration period of 4.

tsoln# | Al Lol ]l fol fio] fit | fiz]

1 1{0(0|2 |3 |1}1|1]0]|O 2 3

2 110|032 j1}t1|1]01|0 1 4

3 1{0(013}16{1|1]1]0]|O0 1 0

4 10|01 ([3|2|011}{01]0 3 3

5 110031201 ]0]0 1 5

6 110703 |5(2|0|1]|0]| O 1 1
I sol'n # ” S I S9 [33 1 84 | S5 I S | S7 1 S8 I

-1)-3|1-41-2(-5
13 )-41-2]|-1
-1y-3)-6(-1|-4
-11-31-4(-1}-6
13| -41)-1]-2

O LN
OO O o O
NN NN
e el el

Table 2.4: The r and p values for the six valid scheduling solutions for the biquad filter
which use 1 adder and 1 multiplier for an iteration period of 4.

|soln# [ ry [ro|rs|ra|rs[rs[re{rs ] pi|pe]ps|ps]ps[ps]|pr]ps
1 0|-1|-1(-2]-1|-1]010 013|132 {0]2]1
2 0O|-1y-1}{-1|-1|-2{0|0}|O}3}1]10|2]3(2}1
3 O{-1|-1j-1}-1}-1]01|0 013|102 ]3;}2;1
4 0|-1|-1(-2{-1]-1]101}0 0131123021
) Of(-1y-1|-1(-1|-2|0(O0f|O0O|3}1}t0|312]|2]|1
6 0}-1{-1}j-1]-1}-1]010 073110322 1




Figure 2.14: The six scheduling solutions for the biquad filter which use 1 adder and 1
multiplier. The number in parentheses next to a node is the time partition to which the
node is scheduled.

ble number of registers required for the implementation is 10, and only 2 of these 99
schedules use 10 registers. These schedules are s = [0 31 -2 1 4 2 -1 ]T
and s = [ 031 -22530 ]T. The minimum number of registers is computed
using the techniques in [{6] with the modification that the results reported here assume
that for a processor that is pipelined by P, stages, the P, pipelining registers cannot be
used by output samples from other processors, while the results in [{6] allow one pipelin-
ing register to be shared by other processors. For the iteration period N = 4, the filter in
Figure 2.15 has 910910 scheduling solutions, and 10083 of these schedules use 1 adder
and 1 multiplier. Of these 10083 schedules, the minimum possible number of registers

required for the implementation is 11, and 21 of these 10083 solutions use 11 registers.

2.5.2 The Solution-Generate Method

This section describes a technique for exhaustively generating only the bit-parallel sched-

ules which can be implemented on a given set of hardware resources. Using this tech-
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Figure 2.15: The 4-stage pipelined 8-th order all-pole lattice filter. The edge labels are
in parentheses to avoid confusion with the node labels. One possible spanning tree is
shown in solid lines.

nique, we can avoid.generating those schedules which use more resources than are avail-
able, and this allows us to generate the desirable schedules in considerably less time.
The following theorem is needed so we can construct B in a manner that allows us to

perform exhaustive bit-parallel scheduling with resource constraints.

Theorem 2.7 In Algorithm FFL, let vy be the node that the link ;. is incident from. If
vy 18 in G(,f), then there are no branches in loop(k) which are also in (G—G%c)). Ifvy isin
(G’—-G%c)), then there are branches in loop(k) which are in (G—G(,f)), and these branches

b

form an elementary directed path which we shall denote as vq by vy byt vy_| by vy.

Proof: The loop denoted as loop(k) in Algorithm FFL has the form of Figure 2.16(a)
or 2.16(b), where vp is the root node of the spanning tree and vy is a node in G(,f).
Recall from Theorem 2.5 that the form in Figure 2.16(b) results from v; LY VIN ~
YCOMMON ~* UR ~ VcomMmoN ~ vj. Both forms of loop(k) can be generalized as the
loop in Figure 2.16(c), where vy, Vy, and ppg are in G(,f). The proof has two cases,

which take into account whether or not node vy is in G'(,f).

Case I: vy is in G'(,f). If the path p,4 in Figure 2.16(c) has any edges in (G — G%c)), then
a subpath v; ~ vy of p4 must exist in (G — Gg)), where vy is in G(,f). The last edge in

UL ~ Vg, i.e., the edge that is incident into vy, cannot be a link because I, is the only
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(a) (b) (c)

Figure 2.16: (a) One form of loop(k): vy LY UIN ~ vp ~ vy. Link [} is in (G—G%c)) and

path py is in G(,f). (b) The other form of loop(k): vy LY VIN ~ VCOMMON ~ vy. Link

lg isin (G — G(,f)) and path p4 is in G(,f). (c) Equivalent loop(k): vy LY VIN ~ Vy ~» V).
Link Iy is in (G—G(,f)) and path pg is in G(,f). The forms in (a) and (b) can be generalized
to the form in (¢).

link which is in loop(k) and in (G — G%) (recall that loop(k) is in G UG ULL). The
last edge in v} ~ vy cannot be a branch because Lemma 2.3 says there is no branch in
(G- G(,f)) which is incident into a node in G(,f). Therefore, if vy is in G(,f), pA4 can have

no edges in (G - G(,f)), and there are no branches that are in loop(k) and in (G — G(,f)).

Case II: v, is in (G — G’(,f)). The edge incident into v in loop(k) is in (G — G(,f)) (if
not, vy would be in G(,f)), and this edge is a branch because lj is the only link which is
in loop(k) and in (G - G%C)). We denote the branch in loop(k) which is incident into vy
as vy_| b vy. Similarly, if vy_; is in (G — G(If)), then branch b;_; exists in (G — G(,f))
to form the path vj_, bj—_)' vj_1 b vy. On the other hand, if vy_; is in G(k), then
by using Case I of this proof, we know that the path vy ~» vj_; can have no edges
in (G - G(,f)). Continuing this argument, we see that when v, is in (G — G%c)), there

are branches which are in loop(k) and in (G - G(If)), and these branches form the path

b b by b
v0—5fu1—3--- 5 01_1—41”. O

48



As described in Section 2.2.3, we construct the fundamental loop matrix B by letting
loop(k) from Algorithm FFL be the k-th row of B. The edges in the graph are numbered
such that the first (JV| — 1) columns of B correspond to the branches of the spanning
tree of G, and the remaining (|E| — |V| + 1) columns correspond to the links. From
Theorem 2.7 we know that if there are branches in loop(k) which are in (G — G’%C)), then
these branches form the elementary directed path vy by vy L bJ—_)l vJ-1 b vy. In
other words, if loop(k) contains branches which have not appeared in previous loops, then
these branches form a path. These branches are assigned to the next available columns
of B in the order that they appear in the path vg LY U] L. bJ—_>1 vy} b vy. The link
li is assigned to the (|V| — 1 + k)-th column of B. By constructing the fundamental loop

matrix in this manner, it still has the form given in (2.3); however, it now allows us to

use Algorithm IE to determine the schedule values of the nodes directly.

The interval Z,, for the scheduling problem is found by enforcing (2.22) for all k
such that by, = 1. Assume that the edge n is incident into node v, and incident from
node wupn, i.c., up — v,. From (2.7), the expression for the n-th folded edge weight is
fao = Nuwy — dy, + sy, — Sy,. Substituting this into the interval for f, gives

0 < Nwy — duy, + Su, — Su, SOE(NW —dy) — Y bejf;
JED

for all £ such that by, = 1. Solving for s,,, gives

—Nuwp +dy, + 54, < 59, < ~Nwn + dy, + sy, +bf (Nw —du) = > beif;
jeD

for all k£ such that b, = 1.

To avoid confusion with the interval for f, (recall that we denoted this as Z,), the
interval for s,, is denoted as Z;. This notation specifies that Z! is an interval for the

scheduling value of the node that edge n is incident into. Let ap = —Nwp + dy, + sy,
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Then the interval Z? is simply the interval Z,, from Algorithm IE with o, added to the

lower and upper bounds. We shall denote this as I” = Z,, + ay,.

Using the technique described in this section for constructing the fundamental loop
matrix B, Algorithm IE can be used to determine the intervals Z, for the folded edge
weights, and the intervals for the scheduling values for the nodes can be found using

TP =TI, + ap.

Example 2.9 In this ezample, all possible scheduling solutions are generated for the
DFG in Figure 2.17 for an iteration period of 4 by generating the solutions for s directly.
The computation time for each node is assumed to be unity. Using the technique described

in this section for constructing B results in

110001000
011000100

B= 06001100010 (2:24)
000010101

Notice that the edge labels in Figure 2.17 are different than those used in Figure 2.7. The
labels have been changed so the column numbers of B in (2.24) correspond to the edge
labels in Figure 2.17. Using B(Nw — d,) = 14x1, the intervals are given in Table 2.5.

Note that in this table fr, = Nwp — dy, + sy, — Sy, has been used to simplify the upper

bounds of the I? intervals.

Figure 2.17: The graph scheduled in Example 2.9.
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Table 2.5: The intervals for Example 2.9.

Z, o' YA

0.0 | T+s %)
0,1 = f1] | =3 +s3 [-3 + s3,—1]
[O,I—fgl 14 59 [1+82,—1+83]
[O,I—fg] 1+ s5 [1+S5,3+32]
[0,1—f7] 14 s;3 [1+S3,3+55]

U W N = 3

The code for this ezample is

for (s3 = 1; 53 <= 2; §3++)

for (s2 = -3 + 53; s2 <= -1; s2++)
for (sb = 1 + g2; s5 <= -1 + 53; s5++)
for (s4 = 1 + s5; 54 <= 3 + 52; sd++)
for (s6 = 1 + s3; 56 <= 3 + 85; s6++)

{
}

Compute link weights. If all positive, print s1 through s6

The twelve solutions for s generated from this code are the same as those listed in Ta-

ble 2.1.

By determining the values of the schedule vector directly rather than first determining
the folding vector and then computing the schedule vector, we can generate only those
schedules which can be executed using a limited number of hardware modules. This is
done using a programming technique that avoids the solutions which use more resources
than are available. For cach operation type (e.g., addition or multiplication), an array
of N data elements is used such that there is one element for each time partition from
0 to N — 1. Each data element contains the number of operations of a given type that
is currently scheduled to that time partition. Each data element also keeps track of

the next time partition in which the hardware resources for that particular operation
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type are not fully utilized. By keeping track of this information, when we generate a
new schedule by incrementing the schedule value for a node, the node is scheduled to a
time partition in which the hardware resources for the operation are not already fully
utilized. The end result is that we do not generate the schedules that use more resources
than are available, so we can generate all scheduling solutions for a given set of resource
constraints much more quickly than if we find all possible schedules and keep only those

schedules which satisfy the resource constraints.

The advantages of including the resource constraints are demonstrated using the

fifth-order wave digital elliptic filter shown in Figure 2.18. We assume that addition

Figure 2.18: The fifth-order wave digital elliptic filter. The branches of the spanning tree
used in Algorithm FFL is shown with solid lines, and the links are shown with dotted
lines.

and muitiplication require 1 and 2 units of time, respectively, and that hardware adders
and multipliers are pipelined by 1 and 2 stages, respectively. The results of exhaustively
generating the scheduling solutions without considering resource constraints are shown
in Table 2.6. The results of exhaustively generating the scheduling solutions which can
be implemented on a given number of hardware adders and multipliers are shown on

the left side of Table 2.7. From these tables, we can see that the time it takes to

exhaustively generate only the scheduling solutions which satisfy a given set of resource




Table 2.6: The results of exhaustively scheduling the filter in Figure 2.18 using the
techniques presented in Section 2.4.1.

iter period # sched solutions CPU time (sec)
16 9900 0.0342
17 4669095 16.2
18 580432280 2020

Table 2.7: The results of exhaustively scheduling the filter in Figure 2.18 for a given set
of resource constraints using the techniques presented in Section 2.5.2. The left part of
the table considers scheduling to the minimum possible number of adders and multipliers
for the given iteration period, and the right part considers scheduling to the minimum
number of adders, multiplicrs, and registers.

iter resources CPU time resources

period (add,mult) # solus (sec) (add,mult,reg) # solns
16 3,1) 77 0.00288 (3,1, 7) 21
17 (2, 1) 98 0.0518 (2,1, 7) 73
18 (2, 1) 131983 11.1 (2,1, 7) 40723
19 (2, 1) 33948842 1700 (2,1, 7) 3056246

constraints is orders of magnitude faster than the time it takes to exhaustively generate
all scheduling solutions. The expressions in [46] can be used to compute the number of
registers required by a given schedule. The results of this are shown on the right side
of Table 2.7. Note that these results assume that internal pipelining registers cannot
be shared between processors, while the results in [46] assume that internal pipelining

registers can be shared between processors.

2.6 Conclusions

Formulations have been presented in this chapter for the bit-parallel and bit-serial
scheduling problems, and we have shown that the retiming formulation introduced in
[30] is a special case of our bit-parallel scheduling formulation. Techniques have been

developed and demonstrated for exhaustively generating all unique retiming and schedul-




ing solutions for a strongly connected DFG. These techniques allow a circuit designer to

explore the space of possible implementations.

In addition to the technique for exhaustively generating all unique bit-parallel schedul-
ing solutions, a technique was also developed for exhaustively generating only the bit-
parallel scheduling solutions which satisfy a given set of resource constraints. Qur results
indicate that this technique can generate schedules in CPU times that are greater than

two orders of magnitude faster than generating all solutions.

One advantage of the formulations presented in this chapter is that they allow us to
understand how retiming and scheduling are similar and that retiming is an important
part of scheduling. Specifically, we show that retiming is a special case of scheduling,
and we include retiming in our scheduling formulations to make them general and to

make visible the role of retiming during scheduling.

The numbers reported in Tables 2.6 and 2.7 show some scheduling results for the fifth-
order wave digital elliptic filter. Since this filter is often used to demonstrate scheduling
techniques, the numbers in these tables provide some benchmarks for gauging the effec-
tiveness of scheduling algorithms. These numbers indicate that the number of schedules
increases dramatically as the difference between the iteration period and the iteration
bound becomes larger. Therefore, for practical applications, our exhaustive scheduling

techniques are most useful when the iteration period is at or near the iteration bound.
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Chapter 3

Register Minimization in Folded
Architectures

3.1 Introduction

In this chapter, expressions are derived for the minimum number of registers required
to implement a statically scheduled DFG. Two cases are considered, namely, the cases

where retiming is and is not allowed to be perfomed on the scheduled DFG.

We begin with a motivating example. After the DFG has been scheduled, specifica-
tions for the communication paths between hardware modules can be determined using
systematic folding techniques [28]. Consider the multiply-add operation in Figure 3.1(a),
which is an algorithm DFG describing y(n) = au(n) + v(n). Assume this multiply-add
is part of a larger DFG which is to be implemented in hardware with an iteration period
of 10, i.c., cach node in the algorithm DFG will be executed by the hardware exactly
once every 10 time units. If the multiply operation is executed by one-stage pipelined
hardware module Hjs at time units 10! + 2, and the add operation is executed by hard-
ware module H4 at 10/ + 8 for integer ! iterations, then the connection between the
multiplication and addition operations in Figure 3.1(a) is mapped to the data path in

Figure 3.1(b) (details of how this data path specification is derived are provided in Sec-
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tion 3.2.2). Upon examination of Figure 3.1(b), one observes that at any given time,
no more than one of the five delays labeled “5D” between Hp and H, is storing a
word of data that will actually be consumed by H,. To avoid the inefficient architec-
ture that would result from direct implementation of Figure 3.1(b) in silicon, memory

management is used in high-level synthesis tools to derive efficient data paths between

processing modules.

u(n)
a X
v(n) y(n)
(a)
................. 101+8
@0 o)
. " (b)

Figure 3.1: (a) Algorithm DFG describing y(n) = au(n) + v(n). (b) Data path specifi-
cation derived from the algorithm DFG for an iteration period of 10.

Memory management consists of choosing the type of registers, number of registers,
and allocation of data to these registers. The type of registers is usually dictated by
the architecture model used. Throughout this chapter, the term “register” is used to
describe a storage location capable of storing one word of data. We use the term “memory
model” for a general rule which describes how data can be allocated to the registers. For
example, one memory model might force each functional unit in the architecture to store
its output samples in a set of registers dedicated to only that functional unit, while
another memory model might lift this restriction and allow all of the functional units
to share a common set of registers. Naturally, the memory model affects the number

of registers and the allocation of data to the registers. In this chapter, we compute
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the minimum number of registers required for a statically scheduled DFG under various
memory models. The allocation of the data to registers is an NP-complete problem for

which heuristic algorithms have been suggested [51, 52, 53].

Techniques for computing the minimum number of registers required by a statically
scheduled DFG have been considered in the past. The left-edge algorithm has been
used to find the minimum number of registers and allocate data to these registers [54].
The life-time chart and circular life-time graph can be used to determine the minimum
number of registers in any DSP circuit [29]. The circular life-time graph is particularly
useful because it graphically takes into account the repetitive and periodic nature of DSP
operations. These graphs have been used, for example, to determine the size of register

files in DSP architectures [52].

In this chapter, we use life-time analysis to derive closed-form expressions for the
minimum number of registers required by a statically scheduled DSP program. These
techniques offer several advantages over previously used techniques. First, the closed-
form expressions can be used to represent cost functions for high-level synthesis opti-
mization tools. An example of using these closed-form expressions in an integer lincar
programming (ILP) formulation is given in Section 3.4. Second, the analytical tools we
introduce can be used to derive expressions for the minimum number of registers un-
der a varicty of memory models which describe how data can be allocated to memory.
This is important because the target architecture may impose constraints on how data
can be routed to memory. We derive expressions for three memory models, namely the
operation-constrained, processor-constrained, and unconstrained memory models. For
the unconstrained memory model, where all memory-sharing constraints are relaxed,
the minimum number of registers required to implement a DFG with m nodes can be

computed in O(m?) time. A third advantage of the analytical tools we introduce is
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that they can be used to determine memory requirements for more complex algorithm

descriptions, such as DFGs which have multiplexers in the data paths.

Pipelining and retiming [27] are powerful tools used in high-level synthesis. Pipelining
can be considered to be a special case of retiming. We consider an integer linear pro-
gramming solution to the retiming problem, referred to as the minimum physical storage
location (MPSL) retiming, which retimes a scheduled DFG such that its memory re-
quirements are minimized under the unconstrained memory model while the schedule
remains valid for the retimed DFG. We use MPSL rctiming to retime a DFG which
has been scheduled using the MARS design system [26], and we compare the memory
requirements of MARS to a globally optimal solution. Our results show that the MARS

system gives optimal or close-to-optimal results in terms of memory requirements.

The results we present can be used throughout the high-level synthesis process. Ex-
pressions for the minimum number of registers can be used during scheduling to help
determine the total cost of the architecture. After scheduling, MPSL retiming can be
used to optimally retime a DFG in terms of registers required for its implementation.
During memory management, our techniques can be used to optimize the hardware de-
sign in terms of the number of registers required. For instance, given the scheduled DFG
and the desired memory model, the minimum number of registers required can be de-
termined, and register allocation can be performed by an appropriate register allocation
scheme which guarantees completion (e.g., forward-backward register allocation [51}).
Expressions for the minimum number of registers can also be used to evaluate the effec-
tiveness of register allocation schemes which are based on heuristics, since some schemes
may require more memory than the theoretical lower bound in order to maintain simple

control structures.

This chapter is organized as follows. The algorithm DFG model and the pipelined pro-
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cessor model used in the chapter are described in Section 3.2. This section also describes
the systematic folding techniques which are used as a framework for our derivations.
Expressions are derived in Section 3.3 to compute the minimum number of registers re-
quired to implement a statically scheduled DFG for various memory-sharing models. In
Section 3.4, memory minimization is considered simultancously with retiming, and our

conclusions are presented in Section 3.5.
3.2 Preliminaries

The DFG model we consider represents periodic and nonterminating data-flow programs.
We consider homogeneous (single-rate) DFGs, where cach node is executed once per
iteration; however, the techniques used in this chapter can also be applied to multirate
DFGs since any well-behaved multirate DFG can be transformed into an equivalent
single-rate DFG [55], [56]. Memory requirements for multirate DSP program descriptions
have also been considered [57], [58]. In each iteration of the homogencous DFGs we
consider, a node consumes exactly one sample from each arc that is input to the node
and produces cxactly one sample which is available at the output of the node. Each
occurrence of a data path connecting the output of a node to an input of a node is
called an arc. Figure 3.2(a) shows one representation of a DFG which contains four arcs,
namely arc U — Vi with 0 delays, arc U — V| with 4 delays, arc U — V; with 2 delays,
and arc U — U with 1 delay. Figure 3.2(b) shows another representation of the same
DFG. In thi;s chapter, the DFG simply provides a program description. As a result, the
two representations in Figures 3.2(a) and (b) can be considered equivalent since they

describe the same DSP program.

The DFG is assumed to have no multiplexers and no conditional branches. When

computing the number of registers required to implement a DFG, G, it is assumed that
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Figure 3.2: (a) A DFG with four arcs. (b) Equivalent representation of the DFG shown
in (a).

all arcs in G have both a source node and a sink node in G. Arcs which communicate

with the outside world can be included by introducing dummy nodes.

The following subsections describe the pipelined processor model used in this chapter

and the systematic folding techniques which form a framework for our derivations.

3.2.1 The Pipelined Processor Model

Consider a processor H with P pipelining stages and computational latency of T' units.
This pipelined processor is often represented as shown in Figure 3.3(a). The hardware
in the dashed box in Figure 3.3(a) is referred to as H("). A more explicit representation
of HP) is shown in Figure 3.3(b), where the computational latency of each sub-oper-
ator Hy, H,,...,Hp is assumed to be T/P. The dashed box shows that the P delays

Dy, Ds,...,Dp are internal to H(P) and cannot be accessed by other data paths.

Consider the implementation of the pipelined processor H shown in Figure 3.3(c).
The hardware in the dashed box in Figure 3.3(c) is referred to as H(P"), In this case, the

P'= P —1 delays D, D,,...,Dp_, are internal to H(P'), but the delay Dp is external



to H(P') and can be accessed by other data paths. A simplified version of this model
is shown in Figure 3.3(d). The structure shown in Figure 3.3(d) may not be acceptable
for some applications due to the multiplexer delay, Thsyx. The final stage of pipelined
processor H has a computational latency of Ty, +Tay x, where Ty, is the computational
latency of Hp. If Ty, + Ty x is greater than the desired clock period, Tpgsrrep, then
the multiplexer must be eliminated and the delay Dp can be dedicated to processor H
as in Figure 3.3(b). Throughout this chapter, we assume Ty, + Tpux < TpESIRED, SO
that the pipelined processor model H(P) can be used and the delay Dp can be accessed
by outputs of other processors, as shown in Figure 3.3(d). We also assume P > 1 so
that P’ is nonnegative. When computing the minimum number of registers required
to implement a statically scheduled DFG, we do not count the P’ registers which are

internal to the processor.

(b)
) From other ®) From other
H{ processors He processors
X
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Figure 3.3: (a) Implementation of P-stage pipelined processor H with lumped pipelining
delays. (b) Pipelined processor with separated internal pipelining delays. (c) Pipelined
processor where the last pipelining delay can be shared with other data paths. (d) A
simplified version of (c).




3.2.2 Systematic Folding Techniques

The folding transformation formalized in (28] gives a method of systematically determin-
ing control circuit specifications from a statically scheduled DFG. This section presents

a brief introduction to these systematic folding techniques.

Consider the algorithm DFG in Figure 3.4(a) which contains the arc U — V with
¢ delays. In this system, the result of the I-th iteration of operation U is used for the
(! + i)-th iteration of operation V. Let N be the folding factor, i.e., N operations are
executed using a single hardware operator. Furthermore, let u and v be the folding
orders of U and V, respectively. The folding order describes the time partition, or the
time unit modulo N, in which an operation is scheduled, i.e., the I-th iteration of U is
scheduled to be executed by hardware operator Hys at time unit (NI +w). Similarly, the
(I + 1)-th iteration of V is scheduled to be exccuted by hardware operator Hy at time
unit N(I +14) +v. If Hy has Py pipelining stages and the pipelined processor model
HP') (see Figure 3.3(d)) is used, then the result of the [-th iteration of U is output from
H((,PI) at (Nl +u+ P[;), where P}, = Py — 1. The folding process maps each arc U — V
with 7 delays in the algorithm DFG to an arc in the architecture DFG. We denote by
Dp(U — V) the number of delays on the arc in the architecture DFG which is the result
of folding arc U — V in the algorithm DFG. This delay is the difference between the
execution time of the (I + 7)-th iteration of V and the time that the result of the {-th

iteration of U is available, i.c.,
Dp(U—=V)=N({l+i)+v-(Nl+u+P})=Ni— P} +v—u. (3.1)

Note that the number of folded delays is iteration independent, i.e., Dp(U — V) is
independent of I. Hardware operator Hy, which is pipelined by Py stages and has P

internal pipelining delays, is connected to hardware operator Hy at switching instance



(Nl +v) with Dp(U — V) delays, as shown in Figure 3.4(b). This derivation differs
slightly from the derivation in [28] since here we use the pipelined processor model H(P")
(see Figure 3.3(d)), where the pipelined processor model H(P) (see Figure 3.3(a)) is used
in [28].

. NI
O ~© @rHpo @)

(a) (b)

Figure 3.4: (a) An arc U — V in the algorithm DFG. (b) The mapping of the folded arc
in the architecture DFG.

A folding set is an ordered set of operations which are executed by the same processor.
Each folding set contains N entries, some of which may be null operations. The operation
in the j-th position within the folding set (where j goes from 0 to N —1) is executed by the
processor during time partition j. For example, consider the folding set S; = {4;,0, A3}
for N = 3. Opcration A; belongs to folding set S; with folding order 0 (also denoted as
(5110)), and operation Ay belongs to folding set S, with folding order 2 (also denoted
as (51]2)). Due to the null operation in the 1-st position within S), the operator that
exccutes operations Ay and Ag will not be utilized at time instances 3/ + 1. For a folded
system to be realizable, Dp(U — V) > 1 must hold for all arcs. Once valid folding sets
have been assigned, pipelining and retiming can be used to satisfy this property (see

[28]).

In the folded realization, the data on the system input is assumed to be valid for N
clock cycles before changing. For example, if N = 2 and the folded realization is assumed
to operate with period T, then the input sample z[0] must be valid from 0 to 27T, z[1]

must be valid from 2T to 4T, etc.

We demonstrate the use of systematic folding techniques by folding the biquad filter
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in Figure 3.5(a). Assume addition and multiplication require 1 and 2 units of time,
respectively (i.e., Ty = 1 and Ta; = 2), and one-stage pipelined adders and two-stage
pipelined multipliers are available (i.e., P4 = 1 and Py = 2). A retimed version of this
filter with valid folding sets assigned using folding factor N = 4 is shown in Figure 3.5(b).
Folding factor N = 4 means that the itcration period of the folded hardware is 4 time
units, i.e., each node of the biquad filter is executed exactly once every 4 time units in
the folded DFG. The folded circuit is shown in Figure 3.6. To see how the folded DFG in
Figure 3.6 is obtained from the algorithm DFG in Figure 3.5(b), consider arc A; — Mj.
Using (3.1), we find

DF(A1-)M4)=4(2)—0+1—3=6.

This means there is an arc in the folded DFG from the adder to the multiplier with 6
delays. Since this arc ends at node My, which has folding order 1 in the algorithm DFG,
the folded arc is switched at the input of the multiplier in the folded DFG at 4l + 1.
This folded arc is shaded in Figure 3.6. Using Figure 3.1(a) as another example and
assigning folding orders 2 and 8 to the multiply and add operations, respectively, and
using N = 10 and Py = 2, we get 10(0) — 1+ 8 —2 = 5 delays in the folded arc as shown

in Figure 3.1(b).

ITj_GD \/:A.. ouT IN

a b
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c d ¢
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Figure 3.5: (a) The biquad filter. (b) The retimed filter with valid folding sets assigned.

The folded DFG in Figure 3.6 represents the data path specifications obtained from
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Figure 3.6: The folded biquad filter using the specifications given in Figure 3.5(b). The
shaded arc represents arc Ay — My in the folded DFG.

the scheduled algorithm DFG by using (3.1); however, this DFG does not represent the
most efficient implementation of the scheduled DFG in terms of memory usage. Through-
out the remaining sections of this chapter, expressions are derived for determining the
most cfficient implementation of a statically scheduled DFG in terms of the amount of
memory required for the implementation. We now introduce some definitions that will

be used in these derivations.

Let z;, { > 0 be the result of the I-th iteration of operation U. Recall that cach node
in the DFG is exccuted exactly once per iteration. Throughout this chapter, we consider
only nonnegative iterations of each operation, which results in no loss of generality.
Variable z; is produced exactly once by Hy, but may be consumed multiple times by
one or more processors due to the possibility of fanout. We define a unique production

time and a unique consumption time for cach variable.

Definition 3.1 The production time of variable z;, denoted as pg,, is the time unit in

which z; ts output from H((jpl), which is Nl + u + P[;. The consumption time of z;,
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denoted as cg;, is the latest time unit during which z; is input to any processor.

Recall that u is the folding order of operation U, which is the time partition, or time unit
modulo N, in which the operation U is scheduled to be executed by processor Hy. Since
we consider only nonnegative iterations of nodes, p;, > u + P}, always holds. Also, the
consumption time must be greater than the production time, i.e., p;, < ¢z, must always
hold because Dp(U — V) > 1is assumed. In the remainder of the chapter, p;, > u+ P}
and p;, < ¢z, are implicitly assumed. We use p;, and ¢;, to define the time interval for

which the variable z; is live.

Definition 3.2 The variable x; is live for all time units in the interval (pz,, cz,].
3.3 Memory Minimization without Retiming

In this section, we derive expressions for the minimum number of registers required to
implement a DFG assuming that the DFG has already been scheduled and no more
circuit transformations (c.g., retiming) are to be performed on the DFG. The minimum
number of registers required to store the variables that are output from a single node
is first computed. The operation-constrained, processor-constrained, and unconstrained
memory models are then described, and expressions are derived for the minimum number

of registers required to implement arbitrary DFGs under these models.

3.3.1 Minimum Number of Registers for Outputs from a Single Node

Before considering the case where the output variables of a node are broadcast to several
arcs (e.g., node U in Figure 3.2), we consider the simple case of a single arc U — V as
shown in Figure 3.4(a). The minimum number of registers required to implement the

Dp(U — V) delays in Figure 3.4(b) can be calculated using life-time analysis. If we let

66



zy, | > 0, be the result of the I-th iteration of node U, then the production time of z;
is pr, = u+ P, + NI and its consumption time is ¢;, = p;, + Dr(U — V). Consider
time unit K. The first variable that is produced by node U is the result of the 0-th
iteration of U, and the production time of this variable is defined to be Pzo- A new
variable is produced by node U every N time units, so the number of variables which

have production times prior to time unit K (i.e., which satisfy p,, < K) is

rpu(K) = [I—{—%,&] ; (3.2)

where [] is the ceiling of z, which denotes the smallest integer greater than or equal
to z. Using a similar argument, the number of these variables with consumption times

prior to time unit K (i.e., which satisfy ¢;, < K) is

(3.3)

re(K) = [5'&—%] .

Note that these expressions for v, (K) and r.y(K) are valid for all K such that
rpu(K) 2 0 and r.y(K) > 0. According to Definition 3.2, a variable is live at time
unit K if it is produced prior to K and not consumed prior to K. Therefore, the num-
ber of live variables at time unit K is the difference between the number of variables
produced prior to time unit K and the number of variables consumed prior to time unit
K, ic., rueuv(K) = rpu(K) — rey(K). Using (3.2) and (3.3), the expression for the

number of live variables at time unit K becomes

Tlive,u (K) = {K;NPQ] - [K;NCR] : (3.4)

The minimum number of registers required to implement the Dp(U — V) delays in
Figure 3.4(b) is the maximum value of iy (K) over all K. The value of reu(K)
is periodic in K with period N because the folded architecture operates periodically

with period N. Therefore, we only need to evaluate (3.4) for N consecutive time units.
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Evaluating (3.4) at time units K = g¢N + n for some integer ¢ and n € [0, N) results in

the number of live samples at time partition n, given by

Tiveu(n) = [qN +17\17—me‘| _ FIN +]T\;— czo'l
_ [n—pzo] N [n— (Pzo + Dp(U — V))}
N N )

where c;y = pgy + Dp(U — V) has been used. The minimum number of registers
required to implement the Dp(U — V) delays in Figure 3.4(b) is the maximum value of

Tlive,u () over the interval n € [0, N), i.e.,

)
Tt(:;l:fj = ng[lg}fv) {Tliveu(n)}.

The following lemma can be used to find the maximum of ry;ye y(n) for n € [0, N).

Lemma 3.1 Given integers A, B, n, and N > 0,

a5 =1 - 5]

Proof: Since

[B;n} 3 [B—-£+n'l (3.5)

is periodic in n with period N, we only need to show that the maximum of this expression

is [—,’%.I for any N consecutive integers. Therefore, it is sufficient to show that

max {[B+7L]_[B—A+n]}_[_{1_]
n€[A~B,A~B+N) N N TN

The expression in (3.5) equals I—ﬁ-] for n = A — B. It remains to show that

SN e Bk

holds forn=A—-B+1,A-B+2,...,A— B+ N — 1. This can be written as

44 <[
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Figure 3.7: (a) A fanout node U. (b) The lifetime chart of samples in the folded archi-
tecture.

Table 3.1: Summary of the three memory models described in Section 3.3.2.

outputs of the nodes outputs of
memory model executed by the same processor different processors
can share registers can share registers

operation-constrained

(Section 3.3.2) No No
processor-constrained

(Section 3.3.2) Yes No

unconstrained

(Section 3.3.2) Yes Yes

in G. This results in no loss of generality since arcs that communicate with the outside
world can be included by introducing dummy nodes. Let I be the set of nodes in G with
at least one outpﬁt arc that terminates at a node in G. In this section, the expressions
derived in Section 3.3.1 are used to compute the minimum number of registers required
to implement G for the operation-constrained, processor-constrained, and unconstrained
memory models. Table 3.1 gives an overview of the three memory models discussed in

this section.
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The Operation-Constrained Memory Model

In the operation-constrained memory model, each node U € U in G is allocated a unique
set of registers in the synthesized hardware. The only variables which are allowed to
occupy the registers allocated to U are those variables which result from the execution
of node U. As a result, register minimization under the operation-constrained memory
model consists of independently computing the minimum number of registers required
to implement each node U € U and adding these results for all nodes in I4. Using (3.10)

to compute the number of registers required to implement each node, we get

(maz)
RO = Z il y
UelU N
where Dg)";x) is computed as in (3.8).

Example 3.2 Consider the scheduled biquad filter in Figure 3.5(b). Recall the assump-
tions that addition and multiplication require 1 and 2 units of time, respectively (i.e.,
Tp =1 and Ty = 2), and one-stage pipelined adders and two-stage pipelined multipliers
are available (i.c., P4 =1 and Py = 2). Table 3.2 shows the number of registers required
to individually implement each node. For example, the five arcs which are output from
node Ay have 1, 2, 3, 4, and 6 folded arc delays. Since max{1,2,3,4,6} = 6, node A,
requires [6/4] = 2 registers. By adding the values in Table 3.2, we find Rp = 8, i.e.,
8 registers are required to implement the biquad filter shown in Figure 3.5(b) using the

operation-constrained memory model. O

The operation-constrained memory model is suboptimal with respect to minimization
of registers since the registers are often underutilized. For example, consider nodes
Az and A4 in Figure 3.5(b). These two nodes belong to folding set S; so they are

executed by the same processor, which is a one-stage pipelined adder. The outputs of
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Table 3.2: The number of registers required to implement the nodes of the biquad filter
individually.

( )
Dirs®

Node U [——N—}

Ay 2
Aj 1
Ay 1
M, 1
Mo 1
M, 1
M, 1

this adder due to A3 and A4 must be delayed by 1 time unit since using (3.1) we find that
Dp(A3 = A1) =1 and Dp(A4 = Az) =1 in Figure 3.5(b). Since the variables resulting
from operation Aj are live during time units 4/ + 3 and the variables resulting from A,
are live during time units 4/ + 1, these outputs could share the same register; however,
under the operation-constrained memory model, each of the nodes A3 and A4 requires
a separate register. This particular underutilization problem could be eliminated by
allowing all variables which are output from the same processor to share registers, which

leads to the processor-constrained memory model.

The Processor-Constrained Memory Model

In the processor-constrained memory model, each processor in the synthesized hardware
is allocated a unique set of registers. The only variables which are allowed to occupy the
registers allocated to a processor are those variables which are output from that particular
processor. As a result, register minimization under the processor-constrained memory
model consists of individually computing the minimum number of registers required

to allocate the outputs of each processor and adding these results for all processors.
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Recall that the nodes (i.e., operations) which are executed by the same processor belong
to the same folding set. The processor-constrained memory model is less restrictive
than the operation-constrained memory model since the processor-constrained model
allows outputs from the nodes in a folding set to share registers in the synthesized
hardware, while the operation-constrained memory model allows no memory sharing
among variables produced by different nodes. To determine the number of registers
required to implement all nodes in a folding set, we must compute the number of live

variables due to the nodes in the folding set for each time partition n € [0, N).

For each node U € U, we must first compute D( 2)

using (3.8). The number of live
variables due to node U in time partition n can be found by substituting p;, = u + P,

into (3.9) to get

(3.11)

o) [n_ (u+p;1)] [n— (u+ Py + D)
live,U = -
’ N N

Let S1,S2,...,S5; be the folding sets in G. Note that s is the number of folding sets in
G, which is equivalent to the number of processors in the folded realization of G. The
number of live variables in time partition n € [0, N) due to all U € Sy is
Tlive, 5 (M) = D Tliveu(n
UeS;
and the number of registers required to implement all nodes U € Sy is

rl(:t?:?k = {0 N) ax {Tive,s,(n)} -

The minimum number of registers required to implement G using the processor-con-
strained memory model is

8
Rp = Zrl:::sz Z (nE[ON { > Ttive,u(n)}) .
k=1

UeSy
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Table 3.3: The number of live variables at the output of each operator of the folded
biquad filter for all possible time partitions.

| time | Si(+) | Sa(x) |
0 2 2
1 3 1
2 1 2
3 2 1

Example 3.3 For the biquad filter in Figure 8.5(b), the number of registers required to

delay the outputs of the adder is r,(:::?l = 3 and the number of registers required to delay

(maz)

the outputs of the multiplier is Tiive.Sy = 2- As a result, Rp = 5, i.e., 5 registers are

required to implement the folded biquad filter using the processor-constrained memory

model.

The processor-constrained memory model may not result in the minimum number of
registers because variables which are output from different processors are not allowed to
share registers. Table 3.3 shows the number of live variables for the scheduled biquad
filter in Figure 3.5(b) for the folding sets S; (adder) and S (multiplier) during each
time partition. The total number of live variables during any time partition can be
found by simply adding the number of live variables due to S; and Ss for that time
partition. Notice that the maximum number of live variables in any time partition is 4
even though we computed in Example 3.3 that the folded implementation requires 5
registers using the processor-constrained memory model. This demonstrates that the
processor-constrained memory model may not achieve global optimality with respect to
register minimization; however, this may still result in an efficient architecture due to

local interconnection.
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The Unconstrained Memory Model

In the unconstrained memory model, each variable can be stored in any register in
the synthesized hardware, regardless of the node in the DFG or the processor in the
synthesized hardware from which the variable originates. The minimum number of
registers required under the unconstrained memory model is computed by taking the
maximum of the total number of live variables in G over one period of operation, which

can be written as

Ry = max { Z "'live,U(n)} ) (312)

n€e(0,N) Ueu
where (3.8) and (3.11) are used to compute 7.7 (n). The quantity Ry represents the

theoretical lower bound on the number of registers required to implement G.

Example 3.4 Table 3.4 lists the value of riiyey(n) for all nodes U € U and all time
partitions n € [0, N) for the biquad filter in Figure 3.5(b). The number of live vari-
ables for each time partition can be found by taking the sum of each column, i.e., these
values for time partitions 0, 1, 2, and 3 are 4, 4, 3, and 3, respectively. The mini-
mum number of registers required using the unconstrained memory model is Ry = 4
since max {4,4,3,3} = 4. Recall that, for this ezample, the operation-constrained mem-
ory model required 8 registers and the processor-constrained memory model required 5

registers. O

To determine the computational complexity of computing Ry in (3.12), let m be the
number of nodes in G. Clearly, the number of nodes U € U cannot be greater than m. If
we assume the maximum number of inputs to any node is a constant that is independent
of m, then the number of arcs in G grows linearly with m, and Dg’n;m) in (3.8) can be

computed for U € U in O(m) time. The maximum number of nodes in G that can be
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Table 3.4: The number of live variables due to each node in the biquad filter for all
possible time partitions.
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executed by a single processor is m (the uniprocessor case), so N < m holds. Then
Tiive,u(n) in (3.11) can be computed for U € U and n € [0, N) in O(m?) time. The
summation in (3.12) represents O(m?) additions, and finding the maximum in (3.12)
requires O(m) comparisons. Therefore, Ry can be computed for an arbitrary DFG with

m nodes in O(m?) time.

3.3.3 Comparison of Memory Models

Table 3.5 compares the number of registers required’for several benchmark filters under
the various memory models. The benchmarks used are the fourth-order all-pole lat-
tice filter mentioned in [59] (F1), the fifth-order wave digital elliptic filter introduced
in [47] (F2), the fourth-order Jaumann wave digital filter mentioned in [60] (F3), the
four-stage pipelined lattice filter [61] (F4), and the biquad filter shown in Figure 3.5(a)
(F5). These filters were scheduled using the MARS system [26]. Notice from Table 3.5
that Ry < Rp < Ro for all of these filters, which appeals to our intuition since the

operation-constrained memory model has the most restrictions on memory sharing while

the unconstrained memory model has no restrictions on memory sharing.

It is important to note that the three memory models considered in Section 3.3.2 are
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Table 3.5: Register count using various memory models. The benchmark filters used are

fourth-order lattice filter (F1), fifth-order wave digital elliptic filter (F2), fourth-order

Jaumann filter (F3), four-stage pipelined lattice filter (F4), and biquad filter shown in

Figure 3.5(a) (F5). N is the iteration period.

Filter | N | Ro | Rp ] Ry
F1 |10 15| 7 | 6
F2 11634 |12 | 10
F3 (10|16 | 9 7
F4 | 2129 20 | 18
F5 | 4] 8| 5 | 4

representative of the various models which can be chosen. New memory models can be
defined as needed, and expressions can be derived for the minimum number of registers

for these models using the same approach as used in Section 3.3.2.

While Table 3.5 gives the number of required registers using the three memory models
described in Section 3.3.2, there are side-effects which are not shown in the table. For
example, decreasing the number of registers by using the unconstrained model typically
increases the number of multiplexers required to allocate data to these registers, and
the overall effect of using fewer registers may actually be an increase in area due to the
area of the multiplexers. As a result, the number of registers cannot be considered to
be the sole cost of the circuit, and several memory models may need to be evaluated to

determine the best one for a given application.

3.4 Memory Minimization Using Retiming

The derivations in Section 3.3 are based on the assumption that the DFG has been
scheduled and no more circuit transformations are to be performed on the DFG. In
this section, we consider optimal retiming of the DFG after scheduling so the resulting

implementation uses the minimum number of registers under the unconstrained memory
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model.

Retiming is often used to reduce the critical path or minimize the number of delays
in a circuit [27]. Retiming has also been used for scheduling [11], [12], [26]. This section
deals with using retiming to minimize the number of registers in the hardware realization
of a statically scheduled DFG. Of course, the retiming must always maintain the validity
of the schedule by keeping Dp(U — V) > 1 for all arcs U — V so the resulting DFG is

realizable.

The problem of minimizing the number of delays in a scheduled DFG is not analogous
to minimizing the number of registers required by the hardware realization of the DFG.
For example, the DFG in Figure 3.8(a) contains 3 delays and its hardware realization
requires 5 registers using the unconstrained memory model when we assume an iteration
period of N = 2 and that all hardware processors are pipelined by P = 1 stage. The
folding orders are indicated next to the nodes. A retimed version of the DFG is shown in
Figure 3.8(b), where the retiming values r(1) = 0, r(2) = 0, and r(3) = 1 are used. This
retimed DFG contains 4 delays and its hardware realization requires 4 registers using
the unconstrained memory model. From this example, we see that use of retiming to
decrease the number of delays in the DFG can actually increase the number of registers

required to implement the DFG in hardware.

Recall that arc U — V in Figure 3.4 is folded using (3.1). Using retiming, the number

of delays in arc U — V can be changed from 7 to
ir =1+ (V) —r(U), (3.13)

where i, is the number of delays in arc U — V in the retimed algorithm DFG, and r(X)
denotes the retiming value of node X [27]. Let D(U — V) denote the number of folded

arc delays obtained by folding arc U — V in the retimed algorithm DFG. To ensure that
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Figure 3.8: (a) A scheduled DFG which has 3 delays and whose hardware requires 5
registers. (b) A retimed version of the DFG which has 4 delays and whose hardware
requires 4 registers. For both parts, an iteration period of 2 is assumed and all nodes
are mapped to processors with one pipelining stage.

the corresponding arc in the folded hardware DFG has a nonnegative number of delays,
we must force the constraint Dp(U — V) > 1, which is equivalent to
Ni,— P +v—u—-12>0. (3.14)

This constraint ensures that the schedule which was determined prior to retiming is also
valid after retiming. Since the retiming values for the nodes are restricted to be integers,

(3.13) and (3.14) can be combined as in [28] to obtain

(3.15)

o) -rv) < | 2R

N

where |z] is the floor of z, which denotes the largest integer less than or equal to z. Once
the set of constraints for the DFG is found using (3.15) (there is one such constraint
for each arc in the algorithm DFG), a solution must be found using an appropriate
technique. We consider an ILP formulation that satisfies the constraints while minimizing

the number of registers required to implement the folded hardware DFG.

In addition to the constraints specified by (3.15), the ILP technique must also use
constraints to find the maximum values in (3.8) and (3.12). We refer to this formulation
as Minimum Physical Storage Location (MPSL) retiming, which is summarized below.

The set of equations in Step (II) of MPSL retiming are similar to those used in [21].
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MPSL retiming: Minimize Ry subject to

(I) YU € U and YV € Vy

(II) YU € U and ¥V € Vy
D > Dp(U —= V) + N(r(V) = r(U))

(1) V¥n € [0, N)

N

|

Consider the biquad filter shown in Figure 3.5(a). Assume T4 =1, Tpy =2, P4 =1,

and Py = 2. The iteration bound, i.e., the lower bound on the achievable iteration
period, is 4 units [60], [62], and we consider scheduling the DFG so that the iteration
period is equal to the iteration bound. Using the schedule found by the MARS system,
the MPSL formulation retimes the DFG such that the minimum number of registers
required to implement the biquad filter using the unconstrained memory model is 4.
One such retiming of the schedule is shown in Figure 3.5(b) (recall that Ry = 4 was
computed for Figure 3.5(b) in Example 3.4). Figure 3.9 shows the complete synthesized
hardware for the DFG in Figure 3.5(b). Notice that register R; is not utilized in time
partition 2 and Ry is not utilized in time partition 3. This underutilization can also be
seen in Table 3.4 where the sum of the n = 2 and n = 3 columns are each equal to 3,
so that only 3 of the four registers are utilized during time partitions 2 and 3. In spite
of this underutilization, the DFG in Figure 3.5(b) uses the minimum possible number of

registers for the given schedule.

The MPSL retiming problem was solved using the ILP solver GAMS [63]. We note
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Figure 3.9: The complete synthesized hardware for the scheduled biquad filter in Fig-
ure 3.5(b). D and R; represent word-size registers.

that in some cases, GAMS found an integer solution which it could not prove was optimal.
In these cases, we proved that the solution was optimal by showing that there is a
time partition for which no better solution exists. When applying MPSL retiming to
the schedules obtained by MARS, we found that MPSL retiming did not reduce the
number of required registers compared to the retiming performed by MARS, i.e., for the
five benchmark filters we considered, the MARS system optimally retimed the filters in
terms of the number of registers required under the unconstrained memory model for
the schedules generated. Although this result‘suggests that the retiming performed by
MARS is good, it says nothing about the quality of the schedules obtained by MARS

with respect to memory requirements.

To determine how the scheduling technique used by the MARS design system performs
in terms of minimizing the required number of registers, the MARS schedules were
compared to globally optimal results. To determine optimal results in terms of the

number of registers, an ILP model is used which schedules a DFG by first minimizing
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Table 3.6: Register count for the benchmark filters described in Table 3.5. N is the
iteration period. Both scheduling techniques require the minimum number of Processors.

Filter || N MARS schedule MARS schedule ILP
using MARS retiming using MPSL retiming schedule
F1 10 6 6 5
F2 16 10 10 10
F3 10 7 7 6
F4 2 18 18 18
F5 4 4 4 4

the number of processors and then minimizing the number of registers, as in [37]. The
results are shown in Table 3.6, where parameters T4 = 1, P4 =1, Tpyy = 2, and
Py = 2 are assumed. First, the table shows that MPSL retiming does not change
the number of registers required by the MARS schedules. The table also shows that

the schedules obtained from the MARS system are optimal or near-optimal in terms of

register requirements for the five benchmark filters.

Example 3.5 Figure 3.10(a) shows a retimed version of the fifth-order wave digital
elliptic filter given in [47]. The filter has been retimed using the MPSL retiming according
to the schedule in Table 3.7 generated using the MARS system. Figure 3.10(b) shows
the synthesized architecture which uses 10 registers. The 10 registers are denoted as R;,
and the internal pipeline delay of the multiplier, which cannot be shared by other data
paths, is denoted as D. Note that parameters T4 = 1, Pao=1,Ty =2, and Pyy = 2
are assumed, and the iteration period of the hardware is 16 units, which is the iteration

bound for the parameters assumed.

83




Table 3.7: The schedule from the MARS system for the fifth-order wave digital elliptic
filter.

node 1 2 3 4 5 6 7
otontes) | 5119 | 510) | (Si1) | i15) | (S412) | ($i110) | (e
node 8 9 10 11 12 13 14
sotontesy | B0 | 1) | (548 | ($:12) | (5:115) | (52l0) | (i3
node 15 16 17 18 19 20 21
cotioray | 5110 | (Si2) | 51 | ) | Sl8) | (s | (Sl
node 22 23 24 25 26 27 28
otjordery | (SH) | (S519) | (S512) | (5111 | (55112) | (o) | (S513)
node 29 30 31 32 33 34

folding

(5310) | (S3]1) | (Sal14) | ($1]12) | (Si[1) | (S4l15)

(set|order)

3.5 Conclusions

Efficient use of memory in application-specific architectures for DSP is very important
in order to meet design specifications. Inefficient use of memory can result in inefficient

designs due to effects such as increased area and increased power consumption.

We have derived closed-form expressions for the minimum number of registers re-
quired by a statically scheduled DSP program for the operation-constrained, processor-
constrained, and unconstrained memory models. We first derived expressions for the
minimum number of registers under the operation-constrained and processor-constrained
models, and we demonstrated via the biquad filter example why these memory models
are not optimal in terms of the number of registers required. We then derived the expres-
sion for the minimum number of registers under the unconstrained memory model. This
expression, which gives the theoretical lower bound on the number of registers required

to implement a statically scheduled DSP program, can be computed in O(m?) time for
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a DFG with m nodes. The techniques we used in our derivations can also be used to de-
termine expressions for lower bounds on memory requirements for other memory models
not discussed in the chapter. The results in this chapter are most applicable to dedicated
application-specific hardware; however, we believe that these results can also be applied

to other technologies, such as FPGA-based designs.

We also considered retiming to minimize memory requirements of a statically sched-
uled DFG. The MPSL retiming formulation uses integer linear programming techniques
to determine the optimal retiming of the DFG in terms of memory required under the
unconstrained memory model while maintaining the validity of the schedule. We used
MPSL retiming to verify that retiming performed by the MARS system is optimal for
the benchmark filters we considered. We then compared memory requirements of sched-
ules obtained by MARS to schedules obtained using integer linear programming which
are optimal in terms of required memory under the unconstrained memory model. Our
results show that the schedules obtained by MARS are optimal or close to optimal in

terms of memory requirements.

The evaluation of the schedules obtained by MARS demonstrates how the techniques
presented in this chapter can be used for evaluation of high-level synthesis systems. These

techniques can be used for design and evaluation throughout the high-level synthesis

process.
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Figure 3.10: (a) Fifth-order wave digital elliptic filter. The DFG has been retimed
using MPSL retiming to minimize the number of registers required given the schedule
generated by the MARS system (see Table 3.7). (b) Synthesized hardware using the
minimum possible iteration period of 16 and the theoretical lower limit of 10 registers.




Chapter 4

Multirate Folding

4.1 Introduction

The widespread use of digital representation of signals for transmission and storage has
created challenges in the area of digital signal processing (DSP). In response to these
challenges, new DSP algorithms have emerged for tasks such as compression and filtering
of digital signals. Many of these algorithms are multirate in nature, meaning that the
sample rate is not constant throughout the algorithm description [5]. While the theory of
multirate DSP has matured over the past decade, there has been relatively little research
on the topic of designing efficient real-time architectures for multirate systems. This has
resulted in a lack of CAD tools that can translate multirate algorithms into efficient

VLSI architectures.

Considerable work has been done in the area of scheduling multirate DSP algorithms
and constructing efficient DSP code for these algorithms [55, 64, 57, 65, 66]. The topic
of this chapter is multirate folding [36], which is a technique for systematically synthesiz-
ing control circuits for single-rate architectures which implement multirate algorithms.
Throughout this chapter, the term single-rate architecture is used to describe a syn-

chronous architecture where the entire architecture operates with the same clock period.
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Examples of data-flow graphs (DFGs) describing multirate DSP algorithms are shown in
Figure 4.1. The DFGs in Figure 4.1 are multirate due to decimation by 2 (| 2 block which
discards every other sample) and expansion by 2 (1 2 block which inserts a zero between
each adjacent pair of samples), which respectively halve and double the sample rate of a
signal. A direct mapping of a multirate DSP algorithm to hardware would require data
to move at different rates on the chip. This would require routing and synchronization of
multiple clock signals on the chip. To avoid these problems, we concentrate on mapping

the multirate DSP programs to single-rate VLSI architectures.

The advantages of multirate folding fall into two broad categories. The first advantage
is that the multirate folding equations can be used to systematically determine the
control circuitry for the architecture from a scheduled DFG. The second advantage,
which is slightly more subtle, is that this formal approach can be used to address other
related problems in high-level synthesis in a formal manner. Two such problems, memory
minimization and retiming [27], are considered in this chapter. Using the multirate
folding equations, we derive expressions for the minimum number of registers required
to implement the architectures, and we derive constraints for retiming the circuit such

that a given schedule is valid.

We first introduced multirate folding in [36] as a technique for synthesizing archi-
tectures for tree-structured filter banks. Full and pruned tree-structured filter banks
are useful for many DSP applications, such as signal coding and analysis. Recent in-
terest in the discrete wavelet transform (DWT) has significantly increased the number
of applications for tree-structured filter banks since the DWT can be computed using
a pruned tree-structured filter bank [42, 41, 43, 44]. Computation of wavelet packet
bases is another application of pruned tree-structured filter banks [45]. Full binary tree-

structured filter banks for signal analysis and synthesis are shown in parts (a) and (b)
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of Figure 4.1. Pruned binary tree-structured filter banks which represent analysis and
synthesis structures for the discrete wavelet transform (DWT) are shown in parts (c) and
(d) of Figure 4.1. Multirate folding can be used to synthesize architectures for each of the
four filter banks in Figure 4.1. In Section 4.6, we give a detailed example which shows
how the techniques presented in this chapter can be used to design an architecture for

the three-level discrete wavelet transform analysis filter bank as shown in Figure 4.1(c).

(c) (d)

Figure 4.1: Examples of full and pruned binary tree-structured filter banks. (a) Full-tree
analysis filter bank. (b) Full-tree synthesis filter bank. (c) Pruned-tree analysis filter
bank which can be used to compute the DWT. (d) Pruned-tree synthesis filter bank
which can be used to compute the inverse DWT.

The main properties of multirate folding are summarized below:

e Multirate folding is a novel technique for synthesizing control circuits for single-rate

architectures which implement multirate DSP algorithms.

o The multirate folding equations allow us to address other problems in high-level




synthesis, such as memory minimization and retiming.

e Multirate folding operates directly on the multirate DFG, avoiding the step of first

constructing an equivalent single-rate algorithm description.

e Multirate folding accounts for pipelining, so architectures can be designed for high

speed and low power [67] applications.

e Multirate folding is applicable to a wide variety of DSP algorithms. We demon-

strate its utility by designing a discrete wavelet transform architecture.

The chapter is organized as follows. Section 4.2 reviews some fundamentals of mul-
tirate digital signal processing. In Section 4.3, we derive the folding equations which
are used to systematically synthesize the control circuits for the pipelined architectures.
Retiming for multirate folding is addressed in Section 4.4. Memory requirements for
the folded architectures are addressed in Section 4.5, and the discrete wavelet transform

design example is given in Section 4.6. Our conclusions are stated in Section 4.7.
4.2 Some Multirate DSP Fundamentals

This section provides a review of some multirate DSP fundamentals which are used

throughout the chapter.

Multirate DSP algorithm descriptions contain decimators and/or expanders. Fig-
ure 4.2 shows a decimator and an expander, which obey the input-output relationships

yp(n) = z(Mn) and

_ ) z(4y) ifn is a multiple of M
ye(n) = { 0 otherwise '

Note that we use the term expander rather than interpolator to describe the block in




Figure 4.2(b) since interpolation generally implies expansion followed by filtering. The

decimator and expander both have the effect of changing the sample rate.

x() —IMf— ¥,  x(0) —tM|— v, (@)

() (b)
Figure 4.2: (a) Decimation by M. (b) Expansion by M.

The noble identities are useful for theory and implementation of multirate DSP [5].
Special cases of these identities are shown in Figure 4.3. These relationships are used in
Section 4.4 to derive conditions for retiming a multirate DFG for folding.

7 -Mi

Y KA X

(a)

A v S v F sl

(b)

Figure 4.3: Redistribution of delays in a multirate system using the noble identities.

4.3 Derivation of Folding Equations

Folding is a technique for systematically determining control circuits in architectures
where multiple algorithm operations (such as addition operations) are time-multiplexed
to a single hardware module (such as a pipelined ripple-carry adder) [28]. The folding
transformation is similar to loop folding [68] which has been used in high-level synthesis.
Figure 4.4 shows an example of how folding can be used to time-multiplex two algorithm
operations to a single hardware operator. Folding equations have been derived in the past
for folding single-rate algorithms to single-rate architectures, and for folding single-rate

algorithms to multirate architectures [28]. In this section, we review folding of single-rate
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algorithms to single-rate architectures, and then derive equations for folding multirate

algorithms to single-rate architectures.

b(n) c(n)
______________ : 2140
2040 ! 5
a(n) *é—-é)‘ o= o Dl X e v

(a) (b)

Figure 4.4: (a) A simple single-rate DSP algorithm with two addition operations. (b)
A folded architecture where the two addition operations are folded to a single hardware
adder with one stage of pipelining.

4.3.1 Single-Rate Folding

Consider an arc (also referred to as an edge) connecting nodes U and V with ¢ delays,
as in Figure 4.5(a). Let the [-th iteration of nodes U and V be scheduled to execute
at time units Nyl + u and Nyl + v, respectively, where u and v are the folding orders
of nodes U and V' which satisfy u € [0, Ny) and v € [0, Ny). The hardware operators
(also referred to as functional units) which execute nodes U and V are denoted as Hy
and Hy, respectively. Note that Ny and Ny number of operations are folded to Hy and
Hy, respectively. If Hy is pipelined by Py stages, then the result of the I-th iteration of
node U is available at Nyl + u + Py. Since arc U — V has 1 delays, the result of node
U is used by the (I + 7)-th iteration of V, which is executed at Ny (! +¢) + v. Therefore,

the result must be stored for
DU - V)=Ny(+i)+v—(Nyl+Py+u)=(Ny - Ny)l + Nyi— Py +v—u

time units. Since we assume that DSP programs iterate from [ = 0 to | = oo, practical

concerns require Ny = Ny to avoid the cases where D3 (U — V) approaches +oo or
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—oo as | gets large. With N = Ny = Ny, the folding equation becomes
DU - V)=Ni—Py+v—u, (4.1)

which is independent of the iteration number, {. Arc U — V maps to a path from Hy
to Hy in the architecture with D3(U — V) delays, and data on this path are input to

Hy at Nl 4 v, as illustrated in Figure 4.5(b).

_______________

. Nl+v
@—» iD —»@ @» P,D §—>D§(U—>V)—0x0—+@
(a) (b)

Figure 4.5: (a) An arc U — V with 7 delays. (b) The corresponding folded arc.

4.3.2 Multirate Folding

Muitirate folding provides a systematic technique for mapping multirate algorithms to
single-rate hardware. Folding equations are first derived for arcs which contain decima-

tors and then for arcs which contain expanders.

The Folding Equation for Arcs Containing Decimators

Consider the arc U — V in Figure 4.6(a), where the output of node U passes through 1,
delays, decimation by M, and i, delays before reaching node V. Let the [-th iteration
of node U execute at time unit Nyl + u and the [-th iteration of V execute at Ny! + v,

where the folding orders satisfy u € [0, Ny) and v € [0, Ny).
The signals labeled in Figure 4.6(a) are related by

wi (1)

z(l —41)
wa(l) = wi(Ml) =z(Ml-1)

y(l) = wa(l —iz) = z(M(l - iz) —41)
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Figure 4.6: (a) An arc U — V which contains a decimator. (b) The corresponding folded
arc.

which implies that the sample y(!), which is consumed during the I-th iteration of V, is
produced during the (Ml — (Mi; +1,))-th iteration of U. Sample y(l) is consumed by Hy
in time unit Ny!+4v and is produced by Hy in time unit Ny(M!— (Mis+1,)) +u. If Hy
is pipelined by Py stages, then y(!) is available at time unit Ny (M- (Miz+1;))+u+Py.

Therefore, y(!) must be stored for

DRWU - V) = Nyl+v—(Ny(Ml— (Miy+14,)) +u+ Py)

= (Ny — MNy)l+ Ny(Mi;+14)— Py +v—u

time units. As in the single-rate case, we would like this expression to be independent
of . This can be achieved by forcing Ny = M Ny, which implies that node U executes
M times for each execution of node V. This is intuitive since the output of node U
is decimated by M before reaching node V. With Ny = M Ny, the folding equation
becomes

DR2(U - V) = Ny(Miy +4,) — Py +v —u, (4.2)
which is independent of the iteration number, [.

Since node V is scheduled to execute on hardware operator Hy at time units Nyl +

v, the data on arc U — V are input to Hy at time units Nyl + v as illustrated in
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Figure 4.6(b). For the case of M = 1, i.e., where the decimator does not affect the data
stream, i; and ¢ can be combined as 1 = i; + i3, and Ny = Ny = N, where N is the
iteration period of nodes U and V. Substituting these expressions into (4.2) gives the

single-rate folding equation (4.1).
The Folding Equation for Arcs Containing Expanders

Consider the arc U — V in Figure 4.7(a), where the output of node U passes through
i, delays, expansion by L, and i, delays before reaching node V. Let the I-th iteration
of node U execute at time unit Nyl + u and the [-th iteration of V execute at Nyl + v,

where the folding orders satisfy u € [0, Nyy) and v € [0, Ny).

x( 1) wy (1) w, (1) y()

@‘—‘ iD 'L ;D —o®
(a) o
_______________ N, I+N, (Li, +i,)+v

o o 25—
(b)

Figure 4.7: (a) An arc U — V which contains an expander. (b) The corresponding
folded arc.

The signals labeled in Figure 4.7(a) are related by
wa(l) = y(l+12)
wil) = wa(Ll) =y(Ll +12)
z(l) = wi(l+1) =y(L{+14) +1i2)

which implies that sample z(l), which is the output of the I-th iteration of U, is used

as the input of the (L(! + ¢;) + i2)-th iteration of V. Sample z(l) is available at the
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output of processor Hy at time unit Nyl +» + Py and is consumed by Hy at time unit

Ny (L(l +4y) + i2) + v, so z(I) must be stored for

DEWU —V) = Ny(LU+11) +i3) +v— (Nyl +u+ Py)

= (NyL - Ny)l + Ny(Liy +i3) — Py +v —u.

For this expression to be independent of I, Ny L = Ny must hold. This implies that
node V executes L times for every execution of node U, which makes sense since the
output of node U is expanded by L before reaching node V. With NyL = Ny, the

folding equation becomes
DEWU - V) = Ny(Liy +43) — Py +v —u, (4.3)

which is independent of the iteration number, I. The samples on the folded arc are input
to Hy at Nyl + u+ Py + DE(U — V) = Nyl + Ny(Li; + 1) + v, so the folded arc is

switched at the input of Hy at Nyl + Ny (Li) + 1) + v, as illustrated in Figure 4.7(b).

For the case of L = 1, i.e., where the expander does not affect the data Stream, i1 and
i2 can be combined as ¢ = 1} + iz, and Ny = Ny = N, where N is the iteration period
of nodes U and V. Substituting these expressions into (4.3) gives the single-rate folding

equation (4.1).
4.4 Retiming for Folding

Retiming for folding is the process of retiming a DFG so the number of delays on any
folded arc is nonnegative. The constraints which guarantee this for single-rate folding
have been derived in [28]. In this section, we review the single-rate constraint and derive

the retiming constraints which ensure that the number of folded arc delays is nonnegative

for multirate folding.




4.4.1 Single-Rate Case

The constraint which guarantees that the number of folded arc delays is nonnegative for

single-rate arcs was derived in [28] to be

r(U) = r(V) < lw} )

< (4.4)

This equation is a special case of the constraints which are derived in the next subsection

for arcs with decimators or expanders.

4.4.2 Multirate Cases

For (4.2) to be useful, D2(U — V) > 0 must hold given a feasible schedule. The data-
flow graph can be retimed to satisfy this condition. Let ] and i} be the number of delays
on arc U — V after retiming. Using (4.2), the number of delays on the folded arc after
retiming is

DPWU = V)= Ny(Miy +1i}) = Py + v —u.

The values of 7} and 7} are related to 4; and i, by
i1 =11 + Mr(Dyy) — r(U)

and

il? =19+ "'(V) - T(Duv)’

where 7(u) and r(v) are the retiming values of nodes U and V, respectively, i.e., the
number of times one delay is removed from each of the output arcs of the node and
one delay is added to each of the input arcs of the node. According to multirate DSP
fundamentals reviewed in Section 4.2, the retiming value of the decimator, r(Dy,), is

the number of times one delay is removed from its output and M delays are added to




its input. Substituting the expressions for ] and i}, we find

DPW V) = Ny[M(iy+r(V) = r(Du)) + i1

+Mr(Dyy) —r(U)] — Py +v —u

D2(U - V) + Ny(Mr(V) - r(U)),

which is independent of 7(D,,,). We can retime the data-flow graph for folding by forcing
D'FD (U = V) >0, which gives

(4.5)

r{(U) — Mr(V) < [MJ .

Ny

Similarly, we can use retiming to guarantee DE(U — V) > 0, where DE(U — V) is
computed as in (4.3). If 4] and ¢}, are the number of delays on the arc after retiming,

then

DEWU - V) = Ny(Li, +15) = Py + v —u.
The expressions for i} and ) are
i,l =1 + ’I‘(Em,) - T‘(U)

and

z'2 =iy + (V) — Lr(Ey,),

where r(E,,) is the retiming value of the expander, which is the number of times we

remove L delays from its output and add one delay to its input. Substituting, we get

DEU-V) = Ny[L(i1 + r(Ey) —=r(U)) +i2+ (V) — Lr(Ey)) - Py +v—u

DE(U - V) + Ny(r(V) - Lr(U)).
as the number of folded arc delays after retiming. Forcing D'F’?(U — V) 2 0 gives

Lr(U)-r(V) < \\M} .

Ny
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Caution must be exercised when retiming a multirate DFG due to its periodically
time-varying nature. For example, consider the multirate DFG in Figure 4.8(a). If
we retime this DFG by assigning the adder a retiming value of —1 and assigning the
multiplier a retiming value of 0, we get the DFG in Figure 4.8(b). The problem is that
these two circuits have completely different functionality. In the single-rate case, retiming
an input node simply results in a delay the output signal, where this example shows that
retiming an input node of a multirate DFG can completely change the functionality of

the circuit. This issue is taken into consideration in the design example in Section 4.6.

y(n) a y(n) a

x(n) —-é— 12 —é()— zy(n) x(n)—é—‘ D—i2 —é}- z5(n)

(a) (b)

Figure 4.8: (a) A multirate DFG which computes z;(n) = a(z(2n) +y(2n)). (b) Retimed
version which computes z3(n) = a(z(2n — 1) + y(2n — 1)).

4.5 Memory Requirements for Folded DSP Architectures

In this section, we derive expressions for the minimum number of registers required by
a folded architecture. The expressions are based on the assumption that a node U in a

DFG is one of the following types:

e Type S: Each outgoing edge of node U contains no decimators and no expanders.

* Type D: Each outgoing edge of node U contains one decimator (| M) and no

expanders.

» Type E: Each outgoing edge of node U contains no decimators and one expander

(tL).




We begin by computing the number of registers required to store the output signal of
a Type S node. We then compute the number of registers required to store the output
signals of Type E and Type D nodes. Finally, we compute the number of registers
required to implement a DSP algorithm which may contain Type S, Type D, and Type E

nodes.

4.5.1 Type S Nodes

Consider the simple case of an arc U — V as shown in Figure 4.5. The minimum number
of registers required to implement the folded edge in Figure 4.5(b) can be calculated using
life-time analysis. The idea is to compute the number of samples which exit pipelined
processor Hy and enter processor Hy prior to time unit K. By subtracting the number
of samples which enter Hy from the number of samples which exit Hy, we find the
number of live samples at time unit K. The minimum number of registers required to

implement the folded edge is the maximum number of live samples over all K.

As in Section 4.3, we assume that the [-th iteration of nodes U and V are scheduled
to execute at time units Nyl +u and Nyl +v, respectively. We found in Section 4.3 that
for this to be feasible Ny = Ny must hold. If we let z;, [ > 0, be the result of the I-th
iteration of node U, then the production time of z;, which is the time unit that z; exits
pipelined processor Hy in Figure 4.5(b), is pz, = Nyl + u + Py. The consumption time
of z;, which is the time unit that z, enters processor Hy, is Czy = Doy + DE(U = V).
The number of samples which have production times prior to time unit K (i.e., which
satisfy p,, < K) is

oK) = [ S22, (46)

where [z] is the ceiling of z, which denotes the smallest integer greater than or equal

to z. The number of samples with consumption times prior to time unit K (i.e., which
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satisfy ¢z, < K) is

() = [F22]. (7

We define z; to be live over the interval (p;,, c;,]. Using this definition, we find that the
number of samples that are live at time unit K is given by e,y (K) = rp y(K) —rc y(K),
which is

Tiive,u (K) = [K—I;:z—(’] - [51\_,7%} - (4.8)

The minimum number of registers required to implement the DE(U — V) delays in
Figure 4.5(b) is the maximum value of ryye iy (K) over all K. The value of r,e y(K) is
periodic in K with period Ny because the folded architecture operates periodically with
period Ny. Therefore, we only need to evaluate (4.8) for Ny consecutive time units.
Evaluating (4.8) at time units K = ¢Ny + n for some integer ¢ and n € [0, Ny) results

in the number of live samples at time partition n, given by

n-— — S
riveu(n) = [‘INU J;vu on] _ "qNu+n (pz].;[: DF(U—->V))]
- [El]__ n = (pgy + DE(U = V)
- |2 2 |

The minimum number of registers required to implement the D3(U — V) delays is the

maximum value of 7, 7(n) over the interval n € [0, Ny), i.e.,

mazc
7‘l(ive,U) = nEr[I(IJ?I.E/(U) {Tlive,U (n)} .

If we let B = —p;,, A= Df;(U — V), and N = Ny, then Lemma 3.1 can be used to

show that

(maz) _ [ DE(WU = V)
live,U NU

is the minimum number of registers required to implement the folded edge in Fig-

ure 4.5(b).




The more general case, where the output of the node is allowed to be the source of
one or more arcs, is now considered. Let £ be the set of outgoing edges of node U. We

assume for this discussion that node U is a Type S node.

If ; is an output sample of node U, then the latest time unit in which z; is scheduled

to be used by a processor is
s = P + max {piw 57} (4.9)

If we let

S(maz) __ s €0
Dpy ™ = ggg{Dp(U —>-)},

then (4.9) can be rewritten as

(maz)

S
Cz; = pg, + Dpy

]

The expressions for r, y(K) and r. 7(K) for the output signal of node U are the same
as in (4.6) and (4.7), and the number of live samples at time unit K is given by (4.8).
Substituting pz, = u + Py, ¢zy = pz, + Dﬁf{,"“’, and K = gqNy + n into (4.8) gives the

number of live samples at time partition n € [0, Ny), which is

n—p n— g, — DS(maz)
- T
Plivea (n) = |22 [ S ] (4.10)
Lemma 3.1 can be used to show that the maximum of the expression in (4.10) for
n € [0,Ny) is
DS(maz)
(fnaa:) — FU
live,U NU } ’

which is the minimum number of registers required to implement the Type S node.

Example 4.1 Consider the Type S node in Figure 4.9(a), where the the iteration periods

for the nodes are Ny = Ny, = Ny, = 2. The folding orders for the nodes are u = 0,
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v1 =0, and vo = 1, and we assume that node U is ezecuted by a single-stage pipelined

processor, i.e., Py = 1. The folding equations are

DU —=V) = 202 -14+0-0=3

DU —-V) = 2(1)=1+1-0=2,

so0 Di\,(g1 %) — max {3,2} = 3. The minimum number of registers required to implement

HE

This can also be seen in the lifetime chart in Figure 4.9(b), where the mazimum number

this Type S node is

of live samples for any time step is 2.

Time # live samples
0 0
l 0
2 |
3 1
4 2
S 1
OB 1—® s .
7 i
8 2
9 1

(a) (b)

Figure 4.9: (a) A Type S node U. (b) The lifetime chart of samples in the folded
architecture.

4.5.2 Type E Nodes

In this section we show how to compute the minimum number of registers required to
store the output signal of a Type E node. We begin by computing the minimum number
of registers required to implement the folded edge in Figure 4.7(b). Let z; be the output

of the [-th iteration of U, which is available at p;, = Nyl + u + Py. This sample is
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consumed by V' at ¢;, = py, + DE(U — V). At time unit K, the number of samples
with p,, < K is

rpu(K) = [K_&(}?_x_g'l .

One sample of z; is produced by node U every Ny time units. Each of these samples is
consumed by node V, so one sample of z; must be consumed by node V every Ny time
units in order to avoid a build-up or deficiency of samples of z; on the folded arc. Since
node V' consumes one sample of z; every Ny time units, the number of samples with
¢y < K is

reu(K) = [5:—22—').' )

Ny

Keeping Figure 4.7 in mind, it is interesting to note that while U produces a sample
of z; every Ny time units and V consumes a sample of z; every Ny time units, node
V is actually executed in hardware once every Ny = Ny/L time units. As a result,
only (1/L)-th of the executions of node V in hardware are used to process the output
of node U. In a typical multirate system, node V will have L input arcs, each of which
occupies (1/L)-th of the executions of V' in hardware, so all executions of V in hardware

are utilized.

The number of live samples of z; at time unit K is

(4.11)

Tlive,u (K) = [K _pz"] - [K — C"’] )

Ny Ny

Substituting K = gNy +n and ¢;y = pz, + DE(U — V) gives

Tlive,u (n) = [

n—sz] n — (pzo + DE(U = V)
Ny | Ny ’

which is the number of live samples of z; at time partition n € [0, Ny). Lemma 3.1 can

be used to find the minimum number of registers required to implement the folded arc,




which is

z DE(U = V)
e = 18 {reu(n)) = [F—NU‘—] '

Computing the memory requirements for a general Type E node, i.e., where the
output of node U can be input to several other nodes after expansion by L, is quite

simple. Let £y be the set of outgoing edges of node U, and let

E(maz) _ €0
Dey*® = max {DEw 57}

The production time of z; is p;, = Nyl + u + Py, and the consumption time is ¢, =
Pe, + DE(""”) The number of live samples at time unit K is given by (4.11), so we can

substitute K = gy + n along with expressions for p;, and c;, to get

E(maa:)
n-— = (pzo + Dpg )
Tlive,U(n) - ’( pzo] _ [ zo ] ,

Ny Ny

and it follows from Lemma 3.1 that

ma
rl(ive,zlzj) ner[%a# {rlwe U( )} =

Dﬁ({;naa:)
Ny '

Example 4.2 Consider the Type E node in Figure 4.10(a) where node U has iteration
period Ny = 6 and nodes V| and V, have iteration period Ny, = Ny, = 2. The folding
orders for the nodes are u = 2, v; = 0, and vy = 1, and we assume that node U is

ezecuted by a single-stage pipelined processor, i.e., Py = 1. The folding equations are
DEU-=W) = 2032 +0)-1+0-2=9
DEU-V,) = 203Q2)+1)—-1+1-2=12,

so DE(maz) = max {9, 12} = 12. The minimum number of registers required to implement

22

This can also be seen in the lifetime chart in Figure {.10(b), where the mazimum number

this Type E node is

of live samples for any time step is 2.
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Figure 4.10: (a) A Type E node U. (b) The lifetime chart of samples in the folded
architecture.

4.5.3 Type D Nodes

In this section we show how to compute the minimum number of registers required
to store the output signal of a Type D node. We begin by computing the minimum
number of registers required to implement the folded edge in Figure 4.6(b). Let z,
[ > 0, be the result of the I-th iteration of U. The first step is to partition z; into M
subsequences a:;" = Tpj4+m for § > 0 and m € [0, M). We must now determine which
of these M subsequences of z; is consumed by node V. To determine this, recall that
y(k) = z(M(k —i9) —14,) in Figure 4.6(a). This can be rewritten as y(k) = z(Mky + ki)
where
i

k2=k"i2—[ﬁ]
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and

i .
kl ZM‘VA—II-.I — 1.

Notice here that 0 < k; < M — 1 always holds. Based on this analysis, we can see
that node V' in Figure 4.6(a) consumes the subsequence z]' = TMj4m for j > 0 and
m=M |-11\]4“-| — 1.

Sample z7* is output from pipelined processor Hy at time unit Pem = Ny(Mj+m)+
u + Py. This sample is input to processor Hy at time unit Cop = Pom + DRWU = V).
One can see from these expressions that one sample of 7" is produced and consumed

every Ny = MNy time units. At time unit K, the number of samples of :1:;" with

K —pym
TpUm (K) = (—"m—ol )

and the number with consumption times satisfying Ccem < K is

K —c¢ym
TeUm(K) = [_.’Vvi] -
The number of live samples of z7* at time unit K is

(4.12)

K —pym K —cm
"'live,Um(K) = I-_“‘:fo_" - " 20 -l

Ny Ny )
Substituting K = gNy + n for integer q and n € [0, Ny') and Czp = Pap + DR(U = V)

gives

Tlive, Uy, (n) =

"n_pzo-l _ n;(pxo+D€(U_)V))
Ny - Ny ‘

Using Lemma 3.1, we find that the number of registers required to implement the folded
edge in Figure 4.6(b) is

r[(;:;l::l(:j) = max {Tlive,U(n)} =

DR2(U - V)
nef0,Ny) )

Ny

We now consider the memory requirements for a general Type D node, where the

output of node U may be the input to several nodes. Let £y,, denote the set of outgoing
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edges of node U which are incident into nodes which consume the subsequence x;" In
other words, each edge e € &y, satisfies M [ 11\14:' — 11 = m, where 7; is the number of

delays on e between U and the decimator on e.

The number of live samples at time unit K for the edges in &u,, is given by (4.12).

The production time of z7 is still Pep = Ny(Mj+m)+u+ Py. The consumption time
. D
18 NOW Czm = pym + Dp,g:l:z) , where

D(maz) _ D e
D™ = max {DRwW 57} (4.13)

Using these expressions along with K = qNy + 7 in (4.12) gives

n— (Nym+u+ Py) n—(NUm+U+Pu+DpD;((;:,a$))
Tlive,Un (N) = - (4.14)
Ny Ny

as the number of live samples of subsequence ] at time partition n € [0, Ny).

The minimum number of registers required to implement the edges in Eu,, 18

)
v = nobaX | {rtiveu (n)}.
Lemma 3.1 can be used to show that
D(maz)
D
) FUm
rien, = [————NV ] : (4.15)

The amount of memory required to store z s, can be determined using (4.15) for
each m € [0, M). Therefore, one might mistakenly assume that the number of registers
required to store all output samples of U is the sum of the minimum number of registers

required to store each of the M subsequences z7", i.e., an incorrect expression for the

minimum number of registers required to store the output samples of node U is
M—1 [ pD(maz)

2 |~

m=0

(4.16)
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The correct technique is to find the mazimum value over n € [0, Nv) of the sum of the

number of live samples for the M subsequences z;" Therefore, to examine the total

number of live samples at time partition n € [0, Nv), we use

M-1
Tlive,u (n) = E Tlive,Um (1), (4.17)

m=0

and take the maximum of this expression. Combining (4.17) with (4.14) results in

T3 (n)—A{jl [n—(Num+u+PU)}_ n_(NUm+u+Pu+D£g';“))
live,U = N, *

m=0

(4.18)
The minimum number registers required to store the output samples of node U is the

maximum of 7,y (n) over the interval [0, Nv), given by

":(ZL’Z? = opax {riive,y(n)}. (4.19)

We now summarize the technique for determining the minimum number of registers

required to implement the output of a Type D node.

1. Partition the outgoing edges of node U into M sets £y,,, where an edge e € &y,

has 7, delays between U and the decimator on e, and M l-ll\H — %43 = m holds.
2. Compute the quantity in (4.13) for m € [0, M).

3. Compute the minimum number of registers using (4.18) and (4.19).

Example 4.3 In this ezample we compute the memory requirements for the Type D
node in Figure 4.11. The iteration periods of the nodes are Ny = 2 and Ny, = 6 for
1=0,1,2,3. The folding orders areu =1, v9 =1, v; =2, vg =4, and v3 = 5. Node U
is assigned to a processor which is pipelined by one stage, i.e., Py = 1. Let e; be the

label of the edge from node U to node V;, i.e., the four edges of the DFG are U 3 V;

109



for i = 0,1,2,3. Recall that £y, is the set of edges which connect node U to nodes
which consume samples £(Ml+m), m € [0, M), where z(n) is the output of node U, so

Eu, = {e2, €3}, Eu, = {eo}, and Eu, = {e1}. The folding equations are

DRU3B V) = 2B(1)+2)-1+1-1=9

U

US3V) = 2B800)+1)—1+2-1=2
U3V, = 23(0)+3)—1+4—-1=8
U

3v) = 2B8(2)+0)—1+5~1=15,

and the values of DE«""J:) are as shown in Table 4.1.

Table 4.1: Values of Dgpm;:) for Example 4.3.

m 0|12
DI 15 | 9] 2

2D I3 D

@_4.

3D I3

LT

i3 2D

Figure 4.11: A Type D node U with several fanout arcs.

The correct way to compute the minimum number of registers is to use (4.19), which

for this ezample s

maz 2 n—(2m+1+1) n—(2m+1+1+05%“z>)
r(- ) = max Z - .
live,U n€fo,6) 6 6

m=0
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- il -1 - - T

= max{4,5,4,4,4,5} = 5.

To see that (4{.16) does not compute the minimum number of registers, note that (4.16)

gives
2 DD(ma:z:)
S || =3+2+1=6,
m=0 6

which is one larger than the minimum number of required registers.

The lifetime chart [51] which verifies that 5 registers are required is shown in Fig-

ure 4.12.
4.5.4 Memory requirements for a general DFG

Consider a DFG, where a node in the DFG can be a Type S, Type D, or Type E node.
Let U denote the set of nodes in the DFG which are Type S, Type D, or Type E nodes.
Based on the derivations of this section, we can write the expression for the number of
live samples in the folded architecture for time unit n as

Tiive(n) = Y Tiive,u(n), (4.20)

Ueu

where the expressions for ;¢ (n) are summarized in Table 4.2. The minimum number
of registers required to implement this architecture is the maximum value of r;,¢(n) over
the interval [0, Ny, ), where Ny, is the least common multiple of the denominators of all
of the ceiling functions in (4.20). These concepts are novsl/ demonstrated in the following
example. This example is intended to demonstrate the memory minimization techniques
for multirate folding that are introduced in this section. Examples which demonstrate
how to use multirate folding to synthesize useful architectures, such as those for M-ary

tree structured filter banks, are given in Section 4.6 and in [36].




time L — _ —_— # live samples
2 ' ' 0
3 |
4 1
5 2
6 2
7 3
8 3
9 3
10 3
11 4
12 4
13 5
14 4
15 4
16 4
17 5
18 4
19 5
20 4
21 4
22 4
23 5
24 4
y

Figure 4.12: The lifetime chart for Example 1.3. The folded implementation requires 5
registers since this is the maximum number of live samples at any time step.

Example 4.4 Consider the multirate DFG in Figure {.13. In this figure, A is a Type D
node, B and C are Type S nodes, D and E are Type E nodes, and F is a sink node.
The iteration periods for the nodes are Ny = Np = 1 and Ng = Ng = Np = Ng =2.
The folding orders are a =0, b=1,c=0,d=0,e =1, and f = 0. Each node is
ezecuted in hardware by a processor which is pipelined by one stage, so Py = Pg = Po =
Pp = Pg = Pr = 1. In the architecture, nodes B and C are time multiplezed to the

same processor, and nodes D and E are time multiplezed to the same processor. Based



Table 4.2: Summary of the expressions for rj;, 7 (n) for the various types of nodes. Note
that u is the folding order of node U, and Py is the number of pipelining stages in
hardware unit Hy; which executes node U.

Node Type Expression for rj;ye 17(n)
S [n=teetpu] [ n—(u+Pu;D§fgaw))]
- —(N + P n—(Num+u+PU+DD(maz))
D Zm=o ([" (Nt Py) _[ 420D
n—(u+P, n—(u+PU+D£’(I;"°=))
g {—Aﬁv_url - { Ny

|2

Figure 4.13: Multirate DFG for Example 4.4.

on these parameters, the folding equations are

DR(A—=B) = 12(1)+0)—1+1-0=2
D2(A-=C) = 121)+1)-140-0=2
DE(B—=D) = 2(1)-1+0-1=0
DEB-E) = 2(1)-1+1-1=1
D(C—-D) = 2(1)-140-0=1
DE(C—=E) = 211)-141-0=2
DED—F) = 1(2(1)+1)-1+0-0=2
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DE(D-F) = 1(20)+0)—1+0—-1=0.

The mazimum fanout values are Dgg:am) =2, Dg(ﬁaz) =2, DIS,«‘(;;M) =1, D;fén o) . 2,

Dg’(gm) =2, and D}g,’(gn“) = 0. Recall that node A has two mazimum fanout values (for
m =0 and m = 1) because it is a Type D node with decimation by M = 2 on each of its

oulput arcs.

The number of live samples at time partition n is given by

Tiive(n) = > Tlive,u (1)

Ue{A,B,C,D,E}

Gl b i b o e e W e
+[n-2—1]_[n;3'|+[n-2-1]_[n;3"+"n;2]_[ngz]’

where the first two terms are for Ag, the nezt two for A, followed by two terms each for

nodes B, C, D, and E. The minimum number of registers required for the architecture
18

(maz)

live — IMax {rlive(n)} = max{4,5} = 5.

ne{0,1}
One implementation which uses 5 registers is shown in Figure /.14, where processor P,
executes node A, processor P, ezecutes nodes B and C, processor P3 executes nodes D

and E, and processor P, executes node F.

4.6 Design Example

In this section we give an example which illustrates how the folding equations, retiming
for folding constraints, and memory minimization can be used to synthesize a single-rate

architecture for a multirate DSP algorithm. The algorithm we consider is the three-level
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INDE R1 RzDﬁ

21+0O
R3 Z,HO—I—O R4 H—{R5 —I
2l 2041
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21+0 : ! 2140 . !

............................

Figure 4.14: Folded architecture for Example 4.4. D denotes an internal pipelining delay,
while R; denote external registers. This implementation uses five registers, which is the
minimum value computed in the example.

orthogonal discrete wavelet transform analysis filter bank which uses third-order wavelet

filters, as shown in Figure 4.15 [5]. The schedule for the architecture is given in Table 4.3.

The steps we take in deriving the folded architecture are as follows:

1. Write the folding equations for the DFG.

2. Write the retiming-for-folding constraints and find a solution.

3. Write the folding equations for the retimed DFG.

4. Determine the memory requirements for the folded architecture.
5. Allocate data to the minimum number of registers.

6. Draw the folded architecture.

Each of these steps is described in detail in the following subsections.
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Figure 4.15: A three-level orthogonal discrete wavelet transform analysis filter bank
which uses third-order wavelet filters.

4.6.1 Folding Equations for the Original DFG

The multirate DFG in Figure 4.15 has 36 single-rate edges and 6 multirate edges which
contain decimators. The number of folded delays on each edge prior to retiming is given
in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate edges. These

values are computed by using the number of delays on the edges in the DFG and the

schedule in Table 4.3 and plugging these values into (4.1) and (4.2).




Table 4.3: Schedule for the three-level orthonormal DWT example. The numbers across
the top of the table represent the eight time partitions. An X denotes a null operation,
so it is clear that the folded architecture will have 87.5% hardware utilization.

0 1T 2[3[ 457677 ]
Processor M1 M]() M11 M10 M12 M10 M11 Mm X
Processor M2 M20 M21 M20 Mgg M20 M21 Mgo X
Processor M3 M30 X M30 M31 M30 M32 M30 M31
Processor M4 M40 X M40 M41 M40 M42 M40 M41
Processor M5 M52 M50 M51 M50 X M5() M51 M50
Processor Ms M52 Mso MGI M50 X Mso Ms[ M50
Processor A1 A10 Au Aw X A10 Au A10 A12
Processor A2 A20 A21 AQQ X A20 A‘Zl A20 A22
Processor A3 A31 A30 A32 A30 A31 A30 X A30
Processor A4 A41 A40 A42 A4() A41 A40 X A40

4.6.2 Retiming for Folding

There are 36 retiming for folding equations for single-rate edges and 6 for multirate edges.
These are given in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate
edges. The retiming for folding equations used are (4.4) and (4.5). The columns labeled
Ryv give the values for the right-hand-side of the inequalities for each edge. Note that
we also impose the constraint r(IN) = 0. This constraint avoids the possibility of adding
new delays at the input which can have the effect of changing the functionality of the
circuit as was described in Section 4.4. The columns labeled r(U) and r(V) in Tables 4.4

and 4.5 give a solution to these inequalities.

4.6.3 Folding Equations for the Retimed DFG

Based on the retiming values for the nodes, folding equations can be written for the
retimed graph. Because the retiming solutions satisfy all of the retiming-for-folding
equations, the folding equations now result in a nonnegative number of delays for each

folded edge. The new folding equations are given in Table 4.4 for the single-rate edges
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and in Table 4.5 for the multirate edges.

4.6.4 Memory Requirements of the Folded Architecture

The memory in the folded architecture can be found using (4.20). Since the architecture
implements the retimed DFG, the number of delays on the folded edges for the retimed
graph are used in the expressions in Table 4.2. An important point is that an edge with
a decimator can change from set £y, to £y, as a result of retiming, and this change
must be taken into account to get an accurate evaluation of the memory required by the
folded architecture. Taking this into account, the minimum number of registers required

to implement the folded architecture is 14.

4.6.5 Allocate Data to the Minimum Number of Registers

To keep routing simple, we attempted to localize data within the architecture while still
using only 14 registers. For example, we were able to allow only the output samples of
multiplier M) to occupy registers R1 and R2 (see Figure 4.16), which avoids routing the
outputs of other processors to these two registers. Allocation techniques proposed in [51]

were used to allocate the data to the 14 registers.

4.6.6 The Folded Architecture

The folded architecture is shown in Figure 4.16. This architecture uses the theoretical
lower limit of 14 registers. Delays denoted as D are internal pipelining delays, while
the 14 external registers are labeled R;. The fact that this architecture has the same
functionality as the DFG shown in Figure 4.15 has been verified by simulation using

Matlab Simulink.

This is not the only architecture which can be designed for this algorithm using
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multirate folding. We have also designed a different architecture, which uses only three
multipliers and two adders, using the systematic multirate folding technique proposed
in this chapter for the three-level orthogonal discrete wavelet transform which uses 7-th
order FIR filters, but this example is not included to save space. This demonstrates
that multirate folding can be used to design a broad class of single-rate architectures for

multirate DSP applications.

Figure 4.16: Folded architecture for the three-level orthogonal discrete wavelet transform
analysis filter bank which uses third-order wavelet filters. If an input to a switch is not
labeled, then this input is switched in at all time units not assigned to other inputs of
the switch.

4.7 Conclusions

A novel multirate folding transformation has been developed for mapping multirate
DSP algorithms to single-rate VLSI architectures. This transformation can be used
to synthesize architectures for a wide range of DSP applications which use multirate

algorithms, such as signal coding and analysis and adaptive signal processing.

Multirate folding equations were derived for arcs which contain decimators or ex-
panders. In both cases, the folding equation contains single-rate folding as a special

case. These folding equations were then used to solve two important related prob-
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Table 4.4: Folding and retiming equations for the single-rate edges in the DWT example.
The retiming-for-folding equation for edge U — V' is r(U) — r(V) < Ryy.

folded delays folded delays
v 4 before retim}i’ng r©) | (V) | Rov after retimi}r,lg
My | Ao -2 0 2 -1 2
My | M3 -2 0 1 -1 0
Moy | Ao -2 0 2 -1 2
My | My -2 0 1 -1 0
Mso | Ao -2 1 2 -1 0
Mo | Ao -2 1 2 -1 0
Ay | Az 0 2 3 0 2
A10 Mg 0 2 2 0 0
Ao | Ao 2 2 3 1 4
Ago | Mg 2 2 2 1 2
Msg | Ay -2 2 3 -1 0
Msgy | Asp -2 2 3 -1 0
Mu Au -2 2 3 -1 2
My | My 0 2 2 0 0
My | Ao -2 2 3 -1 2
My | My 0 2 2 0 0
M;s, | Ay —4 2 3 -1 0
My | Ay -4 2 3 -1 0
Al | Agp -2 3 4 -1 2
Ay | Mg, 0 3 3 0 0
Agr | Ay 2 3 4 0 6
A2 | Mg 4 3 3 1 4
Ms, | Ay -4 3 4 -1 0
Mgy | Ay —4 3 4 -1 0
M12 A12 2 2 2 0 2
My | Ms, 0 2 2 0 0
Moy | Ago 2 2 2 0 2
Moy | My 0 2 2 0 0
Mss | Ago 0 2 2 0 0
My | Arg 0 2 2 0 0
A | Az -6 2 3 -1 2
A | Ms, -8 2 3 -1 0
Ay | Agg 2 2 3 0 10
Agg | Mso 0 2 3 0 8
Msy | Ago 0 3 3 0 0
Mgy | A3z 0 3 3 0 0
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Table 4.5: Folding and retiming equations for the multirate edges in the DWT example.
The retiming-for-folding equation for edge U — V is r(U) — 2r(V) < Ryy.

folded delays folded delays

v v before retim}ilng r(U) | r(V) | Ruv after retimii,lg
IN | My 0 0 0 0 0
IN | My 1 0 0 1 1
Az | My, -1 3 2 -1 1
Aso | My 1 3 2 0 3
Az | Mys 2 4 2 0 2
Az | Moy 6 4 2 1 6

lems, namely, memory minimization in folded architectures and retiming for folding. By
deriving the multirate folding equations and solving these related problems, we have
formalized several crucial steps used in mapping multirate DSP algorithms to efficient

VLSI architectures.

A detailed design example of a three-level discrete wavelet transform analysis filter
bank was given. This example demonstrated how the multirate folding equations, along
with retiming for folding and memory minimization, can be used to design single-rate

architectures for multirate algorithms. Multirate folding can be used to design architec-

tures for a wide variety of filter banks as described in [36].




Chapter 5

Two-Dimensional Retiming

5.1 Introduction

Retiming [27] is a technique used to move delay elements around in a circuit without
changing its functionality. One effect of changing the locations of the delays is that
combinational rippling can be reduced, allowing the the circuit to be clocked at a higher
rate. Reducing combinational rippling also decreases the dynamic power dissipation in
the circuit [48] and allows the circuit to be operated with a lower supply voltage, both of
which lead to low power implementations [67]. Another effect of changing the locations
of delays is that the number of delay elements required can be reduced, resulting in
area-efficient implementations. In addition to retiming for high speed, low power, and
low area implementations, retiming is also an important step in scheduling for high-level
synthesis [11] -[38]. All of these applications of retiming have been studied for circuits

which operate on one-dimensional signals, such as digital audio.

Two-dimensional retiming [33, 34] is used to retime data-flow graphs (DFGs) which
operate on two-dimensional signals such as images. As digital image processing becomes
more popular in multimedia applications, the need for high speed, low area, and low

power implementations of multidimensional digital signal processing (DSP) algorithms
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increases. Like one-dimensional retiming [27], two-dimensional retiming can be used
to increase the sample rate, reduce the area, and reduce the power consumed by a

synchronous circuit.

Techniques for reducing the execution times of 2-D DSP algorithms have been con-
sidered in the past. One way to speed up these algorithms is to process many iterations
concurrently, and it has been shown that this is often possible if the 2-D data are not
processed in line-by-line or column-by-column order, but rather are processed diagonally
[69, 70]. This technique requires an increase in the number of arithmetic units. Another
way to speed up these algorithms is to reduce the sample period using 2-D retiming tech-
niques (33, 34]. This technique does not require an increase in the number of arithmetic
units; however, as we show in this chapter, the algorithm for 2-D retiming in [34] often
results in an implementation which requires significantly more memory than is actually
needed. Since the area consumed by the implementation of a 2-D DSP algorithm can be
dominated by memory requirements [71), it is important to keep the memory require-
ments as small as possible. The algorithm for 2-D retiming in [33] is not very flexible

because it is only compatible with some very specific processing orders of the data.

In this chapter, we present two techniques for retiming two-dimensional data-flow
graphs (2DFGs). Each of these techniques minimizes the amount of memory required to
implement the 2DFG under a clock period constraint. The first technique, called ILP
2-D retiming, is based on an integer linear programming (ILP) formulation which consid-
ers the 2-D retiming formulation as a whole. While this technique gives excellent results,
it has slow convergence for large 2DFGs. The second technique, called orthogonal 2-D
retiming, is formulated by breaking ILP 2-D retiming into two linear programming prob-
lems, where each problem can be solved in polynomial time. The downfall of orthogonal

2-D retiming is that the results of the two linear programming problems can sometimes
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be incompatible. A variation of orthogonal 2-D retiming called integer orthogonal 2-D
retiming is also based on a linear programming formulation, and this technique solves the
incompatibility problem which may be encountered using orthogonal 2-D retiming. The
techniques presented in this chapter result in retimed 2DFGs which require less memory
than than the technique in [34] and are compatible with considerably more processing

orders of the data than the technique described in [33].

This chapter is organized as follows. Section 5.2 describes some specifics of two-
dimensional data processing. Section 5.3 contains the ILP 2-D retiming formulation.
Orthogonal 2-D retiming and integer orthogonal 2-D retiming are presented in Sec-
tions 5.4 and 5.5, respectively. Comparisons with previous work are given in Section 5.6

and our conclusions are in Section 5.7.
5.2 Processing Two-Dimensional Data Sets

A two-dimensional DSP algorithm can be represented using a two-dimensional data-flow
graph (2DFG). A 2DFG G =< V, E,w,d > is a node-weighted and edge-weighted graph

such that

e V is the set of vertices (nodes) in G. The nodes represent computations.
e F is the set of edges in G. The edges represent communication between the nodes.
e w(e) is a 2 x 1 vector representing the dependency on edge e.

e d(v) is a nonnegative scalar representing the computation time of node v.

As an example, the 2DFG in Figure 5.1 describes the computation y(ny,ng) = b +

az(ny +1,n2 —1). An iteration is the execution of each node in the 2DFG exactly once.



a b

-1
x(n;,n,) />x<\ [ 1] (_L\ y(ny,n,)

% o/

Figure 5.1: A 2DFG which describes the computation y(n,ns) = b+az(n; +1,n9 —1).

5.2.1 Overview of Two-Dimensional Retiming
The 1-D retiming equation given in [27] for the edge u = v in a 1-D DFG is given by
wy(e) = w(e) + r(v) —r(u),

where w(e) and wr(e) are the numbers of delays on e before and after retiming, respec-
tively, and r(u) and r(v) are the retiming values of nodes u and v, respectively. The 2-D

retiming equation for the edge u = v in a 2DFG is given by
wy(e) = w(e) + r(v) — r(u), - (5.1)

where w(e) and w,(e) are the 2 x 1 dependence vectors on e before and after retim-
ing, respectively, and r(u) and r(v) are the 2 x 1 retiming vectors of nodes u and v,

respectively.

A 1-D retiming r is said to be legal if w,(e) > 0 for all e € E. The conditions for a

legal 2-D retiming are derived in Section 5.3.1.
5.2.2 Types of Parallelism Available in 2-D Signal Processing

There are two types of parallelism available in 2-D signal processing. The first type of
parallelism is inter-iteration parallelism which can be achieved by increasing the amount
of hardware so that the multiple iterations can be executed concurrently. For example,
consider the 2DFG in Figure 5.2(a) which implements y(ni,n2) = ay(n; — 1,n2) +

by(ny1,n2 — 1) + 2(n1,n2). Assume that this 2DFG is used to process a 3 x 3 data set.
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Table 5.1: Four possible execution orders for the DFG in Figure 5.2(a) assuming a 3 x 3

data set. i
row—b).'-row column-b}.'-column dlag(?nal parallel
serial serial serial

Step 1 y(0,0) y(0,0) y(0,0) ¥(0,0)
Step 2 y(1,0) y(0,1) y(1,0) y(0,1),y(1,0)
Step 3 y(2,0) y(0,2) y(0,1) | y(0,2),y(1,1),(2,0)
Step 4 y(0,1) y(1,0) y(2,0) y(1,2),y(2,1)
Step 5 y(1,1) y(1,1) y(1,1) y(2,2)
Step 6 y(2,1) y(1,2) y(0,2) -
Step 7 y(0,2) ¥(2,0) y(2,1) =
Step 8 y(1,2) y(za 1) y(laz) —
Step 9 y(2,2) y(2,2) y(2,2) -

The output values y(n;,ny) are dependent on one another as shown in Figure 5.2(b),
where, e.g., the arrow from y(1,0) to y(1,1) indicates that y(1,0) must be computed
before y(1,1) can be computed. Four possible execution orders are given in Table 5.1.

y(nl ’nz)

x(ng,ny) |

(a) (b)

Figure 5.2: (a) A 2DFG which describes the computation y(ni,ns) = ay(n; — 1,n3) +

by(n1,n2 — 1) + z(n). (b) The dependencies for this 2DFG assuming it operates on a
3 x 3 data set.

While the three serial execution orders require a single hardware module and 9 time
steps to execute, the parallel execution order requires 3 hardware modules and only five

time steps to execute, where a hardware module is capable of executing one iteration in
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one time step. The parallel execution order uses inter-iteration parallelism to speed-up

the execution of the 2-D signal processing algorithm.

The second type of parallelism is inter-operation parallelism. This involves retiming
the 2DFG so operations can be executed in parallel, resulting in a shorter clock period.
For the 2DFG in Figure 5.2(a), assume addition and multiplication require 1 and 2 time
units, respectively. The minimum clock period for this 2DFG is 4 time units because
there is a path through two adders and one multiplier (e.g., through nodes 4, 2, and
1) which has no delays. As a result, the time required to process the 3 x 3 data set
using a serial processing order is (4)(9) = 36 time units. The 2DFG in Figure 5.2(a)
can be retimed as shown in Figure 5.3 assuming r(1) =[ 0 0 [T, r(2) =[0 0 |7,
r(3) =[-2 1], andr(4) =[-1 0 ]7T. This retimed 2DFG has a minimum clock
period of 2 time units because the longest path with no delays is through a multiplier
or two adders. The time required to process the 3 x 3 data set using the diagonal serial
processing order is now (2)(9) = 18 time units, so 2-D retiming has allowed us to speed

up the processing by a factor of 2.

The reason that 2-D retiming allows the circuit to be clocked faster is because oper-
ations in the retimed circuit can be executed in parallel. Table 5.2 shows some possible
execution times for the nodes in the unretimed 2DFG (Figure 5.2(a)) and the retimed
2DFG (Figure 5.3). Since multiplication and addition in the retimed 2DFG can be per-
formed in parallel rather than sequentially, 2-D retiming allows for an implementation
where operations are executed in parallel, hence the name inter-operation parallelism.
The remainder of this chapter assumes that a 2-D data set is processed using a serial pro-

cessing order, and we focus on exploiting inter-operation parallelism using 2-D retiming.




Figure 5.3: A retimed version of the 2DFG in Figure 5.2(a).

Table 5.2: Possible execution times for the unretimed 2DFG in Figure 5.2(a) and the
retimed 2DFG in Figure 5.3 assuming that addition and multiplication require 1 and
2 units of time, respectively. The unretimed 2DFG does not allow addition and mul-
tiplication to be executed in parallel, while the retimed 2DFG does allow addition and
multiplication to be executed in parallel.

unretimed 2DFG retimed 2DFG
time | node I node2 node3 node4 | nodel node2 node3 node4
0 * * * * *
1 * * * * *
2 * * * *
3 * * * *

5.2.3 Processing Order

A two-dimensional DSP algorithm can often be executed using several processing orders.
This was demonstrated in the previous section where three serial processing orders were
given in Table 5.1 for the 2DFG in Figure 5.2(a). A linear processing order is specified
using a scanning vector s = [ s; s2 |7 and an access vector a = [ a; ap ]7. Lines
orthogonal to the scanning vector are called access lines, and sample (n1,n2) on access
line k satisfies n1s1 +ngsy = k. The processing order is such that, for k; < ko, all samples

on access line k; are processed before the samples on access line k. The access vector,




which is orthogonal to the scanning vector (s-a = 0), defines the order in which samples
are processed on the access lines, such that sample n + a is processed immediately
following sample n. Lines orthogonal to the access vector are called scanning lines,
and sample (n1,7ny) on scanning line k satisfies nja) + noag = k. As an example, the
processing order in Figure 5.4 is described by s =[ 1 1 ]Tanda=[-1 1]T, and
sample (2,4) is on access line 6 and scanning line 2. In addition to linear processing
orders, nonlinear processing orders such as the Dovetail scan [72] also exist; however,

this chapter considers only linear processing orders.

3.3 An Integer Linear Programming Formulation of 2-D
Retiming

In this section we formulate the ILP 2-D retiming technique which considers causality,

the desired clock period, and the memory cost of the 2-D retiming solution.

5.3.1 Causality in 2-D Data Processing

A dependency w(e) in a 1-D DFG must represent a causal relationship. If the edge
u = v has a negative number of delays, this indicates that node v is consuming data
before node u has produced the data, and this is not practical from an implementation
point of view. Causality restricts the number of delays on an edge in a 1-D DFG to be
nonnegative, which can be written as w(e) > 0 for all e € E. The expression w(e) > 0 for
all e € E can be viewed as the condition for the compatibility between the dependencies

and the order in which the data is processed (which is dictated by time).

In 2DFGs, where the processing order is specified by s and a, there are two conditions
for the compatibility between the dependencies and the processing order. These two

conditions are the 2-D causality constraints. The first causality constraint states that
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a dependency w(e) on the edge u - v cannot point from access line ko to access line
ki for k; < ky because this would indicate that the data produced when access line ko
is processed is consumed when access line k| is processed, and this violates causality
because access line k7 is processed after access line k;. Mathematically, this causality

constraint can be written as
Causality Constraint 5.1 For alle € E, s- w(e) > 0 must hold.

The second causality constraint states that if the dependency w(e) lies in the same
direction as the access lines, then the dependency cannot point in the opposite direction
as the access vector because this would mean that the dependency points to the opposite

direction of processing of data. This can be expressed as

Causality Constraint 5.2 For all e € E such that s-w(e) =0, a-w(e) > 0 must hold.

Example 5.1 For s = [ 1 1T anda = [ -1 1|7, Figure 5.4 shows how four
different dependencies would affect the sample at the (2,3) location. The dependency
we)=[0 -1 ]T represents a non-causal relationship because the value computed when
sample (2,4) is processed affects the value at sample (2,3), but sample (2,4) is processed
after (2,3). This dependency violates the first causality constraint because s- w(e) = —1.
The dependency w(e) = [ 0 1 |T represents a causal relationship because the value
computed when sample (2,2) is processed affects the value at sample (2,3), and sample
(2,2) is processed before (2,3). This dependency satisfies the first causality constraint
because s - w(e) = 1. The dependency w(e) = [ I -1 ]T represents a non-causal re-
lationship because the value computed when sample (1,4) is processed affects the value
at sample (2,3), but sample (1,4) is processed after (2,3). This dependency violates

the second causality constraint because a - w(e) = —2 and s- w(e) = 0. The depen-
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dency w(e) = [ -1 1|7 represents a causal relationship because the value computed
when sample (3,2) is processed affects the value at sample (2,3), and sample (3,2) is
processed before (2,3). This dependency satisfies the second causality constraint because

a-w(e)=2ands-w(e)=0. O

scanning lines

5. 0

4. s -1
" .
E
2 3 4 -2
g

2 3 3

n

©0)

Figure 5.4: The effect of four dependencies on sample (2, 3). Processing starts at sample
(0,0).

Let Hpor be the maximum number of samples on any access line. Then the length
of the longest access line is (Hpqz — 1)(a - a). In a practical situation, the length of
each dependence vector is not greater than the length of the longest access line, and this

implies that the projection of a dependence vector onto the access vector obeys
Hpoz(a-a) > |a-wie)l. (5.2)

This inequality is used in the following theorem to combine the two causality constraints

into a single constraint.

Theorem 5.1 Let (5.2) hold for all e € E. Then

Hpmoz(a-a)(s-w(e)) +a-wie) >0 (5.3)
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if and only if the following hold:

1. s-w(e) >0, and

2. a-w(e) >20ifs -w(e)=0.

Proof: In the first part of the proof, we show that (5.3) implies
1. s-w(e) >0, and
2. a-w(e) >20ifs-w(e) =0.

The expression in (5.3) can be written as

—(a-w(e))

® W(e) ~ Hpoz(a- a) .

Using (5.2), this can be written as s-w(e) > ~1. Since s- w(e) is an integer, this implies

s-w(e) > 0. When s- w(e) =0, the expression in (5.3) simplifies to a - w(e) > 0.

In the second part of the proof, we show that

1. s-w(e) >0, and

2. a-w(e) >0ifs-w(e) =0

imply (5.3). If s-wf(e) > 1, then (5.3) holds because (5.2) states that a - w(e) >

—Hpaz(a-a). If s- w(e) =0, then (5.3) holds because a- w(e) > 0. O
If we let
F(x) = Hpezp(a-a)(s-x) +a-x,

then causality can be written as F(w(e)) > 0 for all e € E. This definition of F(x) is
used throughout the remainder of the chapter. For a retimed 2DFG G,, causality can

be written as F(wr(e)) > 0 for all e € E. A 2-D retiming r from G to G, is legal if

F(w(e)) >0forallec E.



5.3.2 The Clock Period Constraints

In this section we develop the constraints which can be used to specify a desired clock
period for the retimed 2DFG. Let p = vp 3 v; & ... *5' 4 be a path in the 2DFG.
The delay of the path is d(p) = Zf:o d(v;) and the dependency of the path is w(p) =
Ef;ol w(e;). The clock period ®(G) is defined to be the maximum propagation delay

through which any signal must ripple between clock cycles. Mathematically,
9(G) = max{d(p) : w(p) = 0}.
The derivations in this section follow the derivations in [27].

Let

W (u,v) = min{F(w(p)) : u B v}
and

D(u,v) = max{d(p) : u B v and F(w(p)) = W(u,v)}.

Lemma 5.2 Let G be a 2DFG, and let ¢ be any positive real number. The following are

equivalent,
5.2.19(G)<c

5.2.2 For all vertices u and v in V, if D(u,v) > c, then W(u,v) > a-a.

Proof: (5.2.1 = 5.2.2): Suppose ®(G) < c and let u and v be vertices such that
D(u,v) > c. Assume that W(u,v) < a-a. If all edges in G are causal, then W (u,v) = 0,
so there exists a path u © v with propagation delay d(p) = D(u,v) > c and F(w(p)) =

W (u,v) = 0, which implies w(p) = 0 and ®(G) > c. Contradiction.

(6.2.2 = 5.2.1): Suppose 5.2.2 holds and let u B v be any path in G such that

F(w(p)) = 0. Then we have W (u,v) = F(w(p)) = 0, which implies d(p) < D(u,v) <c

133



(this is the contrapositive of “if D(u,v) > ¢ then W(u,v) > a- a”). This implies 5.2.1.

]

A critical path is any path u 5 v with F(w(p)) = W(u,v). Assume that r is a 2-D
retiming that satisfies the causality constraints for a given processing order specified by
s and a. Let W, (u,v) and Dr(u,v) have the same definitions on the retimed graph G,
as W(u,v) and D(u,v) have on G. The following can be proven using techniques similar

to those used for the 1-D case [27].

e Wi(u,v) = W(u,v) + F(r(v) — r(u)).
e a path p is a critical path of G, if and only if it is a critical path of G.

o D.(u,v) = D(u,v) for all connected u,v € V

the clock period ®(G;) is equal to D(u,v) for some u,v € V.

Using these results, we can prove the following.

Theorem 5.3 Let ¢ be an arbitrary real number and let s and a be orthogonal vectors
which specify a linear processing order. Then r is a legal retiming such that ®(G,)<c

if and only if
5.3.1 F(r(u) — r(v)) < F(w(e)) for every edge u 5 v of G, and

5.3.2 F(r(u) —r(v)) < W(u,v) —a-a for all vertices u,v € V such that D(u,v) > c.

Proof: The retiming is legal if and only if 5.3.1 holds. If r is indeed a legal retiming
of G, then by Lemma 5.2 the retimed circuit G, has clock period ®(G,) < c under the
condition that W, (u,v) > a-a for all vertices u,v € V such that D, (u,v) > c. Since we

know D (u,v) = D(u,v) and W;(u,v) = W(u,v) + F(r(v) - r(u)), G, has ®(G,) <c
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under the condition that W(u,v) > —F(r(v) — r(u)) +a-a for all u,v € V such that

D(u,v) > c. Since F(r(v) — r(u)) = —F(r(u) — r(v)), this is equivalent to 5.3.2. O

5.3.3 The Memory Cost

For the ILP formulation to be complete, it requires a linear approximation of the number
of registers required to implement the retimed circuit. A linear approximation for the
number of registers required to implement the dependency w(e) should consider the
number of access lines and scanning lines crossed by the dependency. The number of
access lines crossed is s - w(e), and the maximum number of samples in an access line
i8 Hmaz, S0 an upper bound on the number of registers required to store s - w(e) access
lines is Hyaz(s - w(e)). The number of scanning lines crossed by w(e) is a - w(e), and
one register is required for a- a scanning lines that are crossed (to see this, consider that
the dependency corresponding to a single sample delay is w(e) = a); so an estimate for
the number of registers required due to scanning lines that are crossed is (a - w(e))/(a -
a). The linear approximation for the total number of registers required to implement
the dependency w(e) is Hmaz(s - w(e)) + (a- w(e))/(a - a), which can be written as

F(w(e))/(a-a).

If a node has more than one output edge carrying the same signal (such a node is often
called a fanout node), the number of registers required to implerhent these edges is the
maximum number of registers on any one of them [21]. This is shown in Figure 5.5 for the
1-D case, where the naive implementation in Figure 5.5(a) uses 1 + 3 + 7 = 11 registers
while the efficient implementation in Figure 5.5(b) uses max(1,3,7) = 7 registers. Using
this concept, the number of registers required to implement the output edges of node v

is estimated to be

R, = max{F(w-(e))/(a - a)}.

e
v—?
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The cost function can be minimized by using COST = ¥,y R, where R, > F(w(e))
for all edges v 3?. Note that this cost represents the number of memory locations scaled

by a constant scale factor (a - a).
@ 3D ——@ @ D [—+~2D [-1+4D ~@
- —®
(a) (b)

Figure 5.5: (a) Fanout implementation using 1 + 3 + 7 = 11 registers. (b) Fanout
implementation using max(1,3,7) = 7 registers.

5.3.4 The Complete ILP 2-D Retiming Formulation

Theorem 5.3 specifies the conditions for a retiming to be legal and satisfy a given clock
period constraint. Combining this with the cost function, the complete ILP formulation

of 2-D retiming is: Minimize COST = ¥,y R, under the constraints

1. Ry > F(w¢(e)) for all edges v 37 and all v € V' (fanout constraint).
2. F(r(u) — r(v)) < F(w(e)) for every edge u = v of G (causality constraint).

3. F(r(u) —r(v)) < W(u,v) —a-a for all vertices u,v € V such that D(u,v) > ¢

(clock period constraint).

Example 5.2 Consider the 2DFG in Figure 5.6(a). Assume that the computation time
for each node is 1 time unit. The goal is to retime this 2DFG to minimize the memory
while achieving a clock period of ®(G,) = 1 assuming an 8 x 8 data set and a processing
order specified bys =1 2T anda=[ -2 I |7. The mazimum number of samples

on an access line is Hyop = 4 anda-a = 5, so F(x) = 20(s-x)+a-x. The ILP formulation
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is to minimize COST = R;+ Ry+ R3+ Ry subject to the fanout constraints, the causality

constraints, and the clock period constraints. The five fanout constraints are

0+ F(r(2) —r(1))

0+ F(r(3) —
23+ F(r ()
59 + F(r(4) -
0+ F(r(1) -
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The values of W(u,v) and D(u,v) are given in Table 5.3, and based on these values the

twelve clock period constraints are

mmmm e

The retiming solution, found using the ILP solver GAMS [63], is r(1) =

r@ =[3 0], r3

)=[8 0]7, and r(4
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)=[2 0]T. The values of Ry, Ry, Rs,

and R4 are 13, 5, 41, and 5, respectively, and the total cost is COST = 64. The retimed

2DFG is shown in Figure 5.6(b).

A downfall of the ILP 2-D retiming is its slow convergence time. From our experiences,

we have found that the ILP solver can take several minutes to find an optimal solution

for 2DFGs with as few as 12 nodes. The linear programming formulation in the next
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(a) (b)

Figure 5.6: The (a) unretimed and (b) retimed 2DFGs referred to in Example 5.2.

Table 5.3: The values of W(u,v) and D(u,v) for Example 5.2.

Wwuv) |1 2 3 4 D(u,v) |1 2 3 4
1 0 0 0 23 1 1 2 2 3
2 23 0 23 23 2 31 4 2
3 50 59 0 59 3 3 41 2
4 0 0 0 © 4 2 3 3 1

section can be solved in polynomial time, resulting in significantly faster solution times

than ILP 2-D retiming.

5.4 Orthogonal 2-D Retiming

Orthogonal two-dimensional retiming partitions the 2-D retiming problem into two 1-
D retiming problems. These 1-D retiming problems, which we call s-retiming and a-
retiming, can be solved in polynomial time using techniques similar to those introduced
in [27). By partitioning the 2-D retiming problem into two 1-D retiming problems, some
quality of the final solution may be sacrificed because the final solution is no longer
guaranteed to be globally optimal; however, our experience has shown that orthogonal

2-D retiming finds solutions that are comparable to the ILP solutions, and these solutions
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are found in much faster CPU times than the ILP solutions.

Simply stated, orthogonal 2-D retiming is performed by first performing s-retiming

and then performing a-retiming, where these two tasks are specified below:

¢ s-retiming: Project the 2-D retiming problem onto the s-vector and solve this 1-D

retiming problem to find the values of s - w,(e) for e € E.

e a-retiming: Project the 2-D retiming problem onto the a-vector and solve this 1-D

retiming problem to find the values of a- w,(e) for e € E.

The following subsections describe s-retiming and a-retiming along with the fanout model
used in orthogonal 2-D retiming. Throughout these subsections, the notations z(*) and

z(®) are used to denote x - s and x - a, respectively.

5.4.1 Fanout Model

In the ILP formulation of 2-D retiming presented in Section 5.3, the fanout constraint is
used to ensurc that the memory required by the output edges of a node is the maximum
memory required by any of the output edges of the node. In 1-D retiming [27], a “gadget”
is used to model the fanout node so the memory required by the output edges of the
node can be accurately modeled using a linear programming formulation. Figure 5.7
shows a similar gadget used so that the 2-D retiming problem can be modeled as two

linear programming problems.

The following four quantities are used in orthogonal 2-D retiming

wr(;t)n = 1?%: {,w(s) (ei)}
Whoe = max {wi)(en)}
wsgt)zz = max @ {w(a)(ei)}

€; :wﬁ")(e;):w,.,,m,z
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w1('a131a:c = max {w7(.a.) (i) } .
’ {3V 0o Y omgyy (8)
€Wy (€i)=Wr maz

Note that w2}, are known from the unretimed 2DFG, wif)nam and w{%); are known after
s-retiming has been performed, and wﬁ?,),m are known after s-retiming and a-retiming

have been performed.

Figure 5.7(a) shows a fanout node with k output edges. The gadget in Figure 5.7(b)
is used to model the fanout node in a 2DFG. Each of the k edges e;, 1 < i < k, has
an associated weight w(e;) which is known from the 2DFG. The node 4 is a dummy
node with zero computation time (d(%) = 0), and the edges é;, 1 < i < k, are dummy
edges used so the linear programming formulations used in orthogonal 2-D retiming can
accurately model the memory required by a node with more than one output edge. We

call the edges é;, 1 < i < k, auziliary edges.

In addition to the weights w(e;), each of the edges e; has the associated quantities

o(e;) = 1/k and .
N l/m if 'llh('s) (Ci) = w7('f‘r)naz
v(ei) = { 0 otherwise ’

where m is the number of edges e; satisfying wgs)(ei) = wif)naz after s-retiming has been

performed. Each auxiliary edge in Figure 5.7(b) has the associated quantities

w(E) = wE, —w(e;)
w® (&) = v, —w(e)

and o(é;) = 1/k and
e (8) 5y —
(&) = { 1/m ifw ™’ (&)=0

0 otherwise

where m has the same definition as it has in y(e;).




Q,
©-® @

(b)

Figure 5.7: (a) A fanout node u. (b) A gadget used to model node u in the linear
programming formulations of orthogonal 2-D retiming.

5.4.2 s-Retiming
In orthogonal 2-D retiming, s-retiming affects the memory requirements of the retimed
2DFG more than a-retiming because s-retiming deals with entire delay lines while a-

retiming deals with single delays. As a result, s-retiming is performed first on the 2DFG,

and then a-retiming is performed.

In s-retiming the 2-D retiming problem is projected onto the scanning vector. Starting
with the 2-D retiming equation in (5.1), we can take the dot product of both sides of

the equation with the scanning vector s to get
s-w(e) =s-wle) +s-r(v) —s - r(u). (5.4)
Using the notation z(*) to denote s - x, (5.4) can be written as
w®(e) = w® (e) + r&(v) — r)(w). (5.5)

The first causality constraint in Section 5.3.1 requires s - w,(e) > 0 for all e € E, which

can be rewritten as wﬁs)(e) > 0 for all e € E. Using this and (5.5) results in

w®(e) +r () — r(w) > 0 (5.6)
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for all e € E. The second causality constraint in Section 5.3.1 and the clock period

constraint in Section 5.3.2 are enforced during a-retiming.

The cost function for s-retiming is the total number of access lines crossed by the
dependencies. This can be written as
COST =Y ale)wl(e) = 3 a(e)w(e) + 3 o(e)(r? (v) — r)(w)), (5.7)
e€E e€E e€E
where o(e) is the weight of an edge according to the fanout model in Section 5.4.1. The
formulation of s-retiming consists of minimizing the total number of access lines crossed

(i.e., minimize COST in (5.7)) while keeping wss)(e) > 0 for all e € E using (5.6).

Since ¥ .c g o(e)w(®)(e) is fixed, s-retiming can be stated as: Minimize
COST = 5" rl)(v) (Z ole) - > a(e))
vev 25y v5H7?

subject to (%) (u) — r((v) < wl®(e) for all e € E.

Example 5.3 In this example, we perform s-retiming on the 2DFG in Figure 5.6(a)
assuming s = (1 21T and a = [ -2 1]T. Using the fanout model described in
Section 5.4.1, the 2DFG in Figure 5.6(a) is redrawn in Figure 5.8(a), where node 5 is

the dummy node associated with fanout node 1. The cost function is

COST' = rl)(1)(1-1)+r)(2) (% - %) +r(3) (% - g)

+r(4) (2 - 1) + & (5) (1 - 0)

= —rl9(2) = r(3) + I (4) + rl)(5).

The s-retiming problem is to minimize COST' subject to the following seven causality




constraints

r&)(1) —rl(2) < 0
(1) —rbX3) < 0
r()(2) —r9(4) < 1
r(8(2) —rl(5) < 0
r8(3) —r&l4) < 3
@) —r(5) < 0
rl)(@) —ri)(1) < o,

and the solution found using the linear programming solver in GAMS [63] is r()(1) = 1,
r((2) = 1, r9(3) = 3, r($)(4) = 0, and r*)(5) = 3. The result of s-retiming is shown
in Figure 5.8(b), where the numbers in parentheses represent wl® )( ). This solution is
combined with the results of a-retiming in Section 5.4.3 to obtain the complete orthogonal

2-D retiming solution.

(V]

2

(a) (b)

Figure 5.8: (a) The unretimed graph using the fanout model. (b) The result of s-retiming,

where the numbers in parentheses represent wﬁs)(e).

The s-retiming formulation accurately models the memory requirements of a fanout
node. The following explanation uses the notation introduced in Section 5.4.1. Let the
path u 3 o, % 4in Figure 5.7 be denoted as p;. The values of wgs)(éi) are made
as small as possible under the constraint w'® )(e,) > 0. Therefore, the value of r()(a)
will force w(s)( i) = 0 for at least one edge which we call é; (i.e. wﬁs)( é;) = 0). Since
minj <ij<k {w£ )(é,-)} = w,(-s)(e]) and the retimed path weights w® )(p,) are identical for

1 < i < k (they are all equal to wi)s + r($)(@) — r(®)(u)) because the unretimed path
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weights w(®)(p;) are identical (they are all equal to wS,’;Zn), we know wﬁs)(ej) = wﬁf}m.
This means that

wi) (p;) = wl (e;) + wP (&;) = W)

r,maz*

The total cost of the k fanout edges is

Z ole)w(e) = Z a(e)w')(e)

e€{eié;},1<i<k e€{ei éi},1<i<k
+ Z o(e) (r(s)(v) - r(’)(u))

ee{ehéi},lsisk

e S gy -1 T o))
= & % r u & T u

1<i<k 1<i<k

= wike + (@) - rl)(u)

= ¥ (p;)

= )
Wr maz»

as desired.

5.4.3 a-Retiming

In @-retiming the 2-D retiming problem is projected onto the access vector. While s-
retiming takes the first causality constraint of Section 5.3.1 into account, a-retiming
takes the second causality constraint and the clock period constraint into account. Like

s-retiming, a-retiming is a linear programming formulation which can be solved in poly-

nomial time.

The constraints for a-retiming are the second causality constraint in Section 5.3.1 and
the clock period constraint. Starting with (5.1), we can take the dot product of both

sides of the equation with the access vector a to get
a-wy(e)=a-w(e)+a-r(v)—a-r(u). (5.8)
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Using the notation z(® to denote a - x, (5.8) can be written as
w® (e) = w® (e) + r® (v) — r® (). (5.9)

The second causality constraint in Section 5.3.1 requires w® (e) > 0 for all e € E such

that w'® (e) = 0. Using this in (5.9) results in
w® (e) + r®(v) = r@(w) > 0 (5.10)
for all e € E such that w{”(e) = 0.

Clock period constraints must also be taken into account during a-retiming. A set of
constraints for a-retiming is formulated such that the clock period of the retimed graph

satisfies ®(G,) < ¢ for some desired clock period c. The following notations are used:

W (u,v) = min{w® (p) :u B v}, wveV

W (u,v) = min{w®(p) :u B v}, wveV

we(y,v) = min{w®(p) : u B v and wi(p) = W (u,v)}, uwveV

Wi (u,v) = min{w{?(p) : v B v and wi(p) = W (u,v)}, u,veV
D(u,v) = max{d(p):udv and w®(p)=WO(u,v)}, wveV

Dr(u,v) = max{d,(p):uB v and w¥(p) =W (u,v)}, uveV

The following two lemmas are useful for finding a-retiming conditions which satisfy a

given clock period constraint.

Lemma 5.4 Let r be a legal 2-D retiming which retimes G to G,. The following hold:

5.4-1 W (u,0) = W (u,v) + 7@ (v) = r) (w).

5.4.2 Dy (u,v) = D(u,v).




Proof:
(6.4.1)
Wi u,v) = min{w®@E):uBv and w®(p)= W) (u,v)}
= min{w®(p) + r@® () =r@@):u by and wl® (p) = W) (y, v)}

= r@(y) =@ (u) + min{w®(p) : u B v and w® (p) = W (u,v)}

= @) - r@@) + W@ (u,v)

(5.4.2) We can use d(p) = d,(p) and the result from 5.4.1 to write

Dy(u,v) = max{d.(p):uDv
and w(®(p) + ¥ () — 1@ (y) = W (u,v) + r@ () — @ (u)}
= max{d(p):u D v and w(@ (p) = W@ (y, v)}

= D(u,v).0

Lemma 5.5 For a legal retiming G, of G, the following are equivalent:
5.5.19(G,) <ec.

5.5.2 If D, (u,v) > ¢ and Wr(s)(u,v) =0, then Wr(a)(u,v) >a-a.

The proof of Lemma 5.5 is similar to the proof of Lemma 5.2. Lemmas 5.4 and 5.5

are used to prove the following.

Theorem 5.6 Given an s-retiming solution such that r()(w) — r(v) < w(®)(e) for

all edges u = v in E, the values (@) (v) result in a legal 2-D retiming of G such that

®(G,) < c if and only if.
5.6.1 79 (u) — r@)(y) < @ (e) for all e € E such that wga)(e) = 0.
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5.6.2 7 (u) — (@) (v) < W) (u,v)—a-a for all vertices u,v € V such that D(u,v) > c

and Wrs)(u,v) =0.

Proof: 5.6.1 is simply the second causality constraint for a legal 2-D retiming. If 5.6.1
holds, then r is a legal retiming and by Lemma 5.5 the retimed graph G, has clock
period ®(G,) < c under the condition Wr(a) (u,v) > a- a for all vertices d,v € V such
that D,(u,v) > cand Wr(s)(u,v) = 0. From Lemma 5.4, we know D, (u,v) = D(u,v) and

r(a)(u,'u) = W@ (u,v) +r@(v) — #(® (u). Therefore, Lemma 5.5 states that ®(G,) <c

is equivalent to 5.6.2. O

The cost of a-retiming is the weighted number of scanning lines crossed, given by

COST = 3 v(e)ul(e) = 3 v(e)w(e) + T 7(e)(r@ (v) — r@ (w)).

eeE eeE ecE

Since Y,c 5 v(e)w(® (e) is fixed, a-retiming can be stated as follows: Minimize

COST' = ¥ r@(v) (z Ye) = Y v(e))

vev 25y v3?

subject to

1. 7@ (u) - 79 (v) < wl®(e) for all e € E such that wrs)(e) =0.

2. 1@ (u) — r@(v) < W@ (u,v) —a-a for all u,v € V such that D(u,v) > ¢ and

) (u, ) = 0.

Example 5.4 In this ezample, a-retiming is performed on the 2DFG in Figure 5.6(a).
Since a-retiming depends on the results of s-retiming, the results of s-retiming found in
Ezample 5.3 are used in this ezample. The 2DFG in Figure 5.6(a) is redrawn in Fig-
ure 5.9(a), where the values of w((e) and st)(e) are ezplicitly shown. We assume that

the computation time of each node is 1 time unit, with the exception that the computation
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Table 5.4: The values of W;* (u,v), W@ (u,v), and D(u,v) for Example 5.4.

W) |1 2 3 4 5 WOwwv)|1 2 3 4 5
1 0 0 2 0 2 1 0 0 0 3 0
2 1030 2 2 3 0 3 3 0
3 1100 0 3 1 10 -1 0
4 1130 3 4 0 0 0 0 0
5 - - - -0 5 - - - -0

D(u,v) |1 2 3 4 5

1 |1 2 2 3 2

2 (314 21

3 (341 21

4 |2 331 3

5 |- - - -0

time of the dummy node 5 is zero. The goal is to retime the 2DFG so it can be clocked

with a clock period of 1 time unit.

wib=0 wit=0

(a) (b)

Figure 5.9: (a) The 2DFG which is subjected to a-retiming in Example 5.4. (b) The
results of s-retiming and a-retiming for the 2DFG in Figure 5.6(a). These results are
found in Examples 5.3 and 5.4.

For fanout node 1, wsﬁlm =0, wﬁf)m = 2, wS,f,)n =0, and m = 1. The values of

Wrs)(u,v), W@ (u,v), and D(u,v) are given in Table 5.4.
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The a-retiming formulation is to minimize
COST' = r@(1)(1 1) +rD2)(0 - 1) +rD(3)(1 - 2)

+r@(4)(2 - 1) + r@(5)(1 - 0)

= —r(@(2) - r@)(3) + 1@ (4) + rla)(5)

subject to
r@) (1) —r@(2) < 0
r@(2) -r@4) < 3
r@(3) —r@@4) < -1
r@(3)-r@5) < 0
r@(1) -r@@Q) < -5
r@1) —r@@4) < -2
r@)(2) - r@4) < -2
r@(3) - r@4) < —6.

The a-retiming solution found using the linear programming solver in GAMS [63] is
r@)(1) = =7, r@(2) = -2, #®)(3) = -6, r(®)(4) = 0, and r®(5) = —6. The 2DFG is
drawn in Figure 5.9(b) with the results of s-retiming (from Ezample 5.3) and a-retiming

shown.

We can show that the a-retiming formulation accurately models the memory require-

ments of a fanout node when the practical restriction
[wi® (e)| < Hmaz(a - 8)/2.

is enforced. Assume that F(w,(e)) is used to estimate the memory required by the

edge e.
Lemma 5.7 If wﬁs)(ei) < wﬁ”(e,-), then F(wy(e;)) < F(wy (e )).

Proof:

wl® (e;) < wss)(ej) = w(e)+1< wﬁs)(ej)



= Hpezla- a)wﬁs)(ei) + Hpoz(a-a) < Hygo(a- a)wﬁs)(ej)
= Hpez(a: a)wﬁs)(ei) + Hmeg(a- a)/2 < Hppozla- a)wy(-s)(ej)

"I{maz(a'a)/2 (5'11)

Using w,(-a)(ei) < Hpmez(a-a)/2 and wﬁa)(ej) > —Hpoz(a - a)/2, we can write the

inequalities

Hpoz(a- a)w,(.’) (e;) + wﬁ“)(ei) < Hpee(a- a)wﬁ’)(ei) + Hppoz(a- a)/2
and
Hpoz(a- a)wﬁs)(ej) + wﬁ“) (ej) > Hpmqz(a- a)wﬁ’) (€5) — Hmez(a-a)/2.

Combining these with the inequality in (5.11) results in

Hpor(a- a)wﬁ’)(ei) + w$“)(e,~) < Hpyaz(a- a)w,(.s) (e;) + wﬁ")(ej)

= F(w:(ei) < F(w(e;)).0

The following explanation uses the notation introduced in Section 5.4.1. From Lemma
5.7, we know that for a node u with k output edges, the edge e; which satisfies F(w(ej)) >
F(w(e;)), 1 € 1 < k, must obey wis)(ej) = wﬁf,)nam after s-retiming. Given that
wS”(e,-) = wﬁf),m, from the definition of F(-) we can see that the edge e; which sat-
isfies F(wr(e;)) > F(wy(e;)), 1 <i < k, also satisfies w® (ej) = w %0z, To summarize,
the edge e; which satisfies F(wy(e;)) > F(w,(e;)), 1 < i < k, satisfies wﬁs)(ej) = ws,s,)naz

(a) (a)

and wy (ej) = Wr,maz-
The goal now is to show that the cost of the fanout node, given by

X vew(e),

e€{ei,éi},1<i<k
is equal to w,(?,)naz. Let the path u % v; % din Figure 5.7(b) be denoted as p;. The only

auxiliary edges which affect the cost function are those with w,(f')(éi) = 0 because v(&;) =
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0 for any auxiliary edge with wy )( i) > 0. For the auxiliary edges with w® )( i) = 0,

the values of w® )(e,) are made as small as possible under the constraint w(® (&) > 0.

Therefore, the value of r{®) () will force wi® )( i) = 0 for at least one edge which satisfies
(3)( i) = 0. Let this edge with w(a)( ;) =0 and w(s)( i) = 0 be the edge ;. Since
min  {wf®(&)} = wl ()
&:w{V(8;)=0
and the retimed path weights wi® )(pi) are identical for 1 < ¢ < k (they are all equal to
wis + (@ )(@) — (@) (1)) because the unretimed path weights w(%) (p;) are identical (they

are all equal to ws,‘f,)n) we know w(® (ej) = wﬁa,)naz This means that

wl)(p5) = we;) + uf® (&) = uf)
The total cost of the k fanout edges is

Yo vewe) = Y. vewDe)

e€{e;,é;},1<i<k e€{e; é;},1<i<k

+ X A () - ()

e€{e;,é;:},1<i<k

= wg,?,)n + -1— (mr(“)('&) — mr(“)(u))

m
= 0l +r® (@) - 1@ ()

as desired.

5.4.4 Combining the results of s-retiming and a-retiming

The results of s-retiming and a-retiming must be combined to get the retimed 2DFG.

From wﬁs)(e) = wy(e) - s and w@(e) = wy(e) - a, we can write

wg) e T
[ i ] - [ o ] wr(e)
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so wr(e) can be computed using
171,
w,(e) = [ s ] [ wr(e) ] . (5.12)
r

Example 5.5 For the retiming performed in Examples 5.3 and 5.4, the processing order

was specified bys=[1 2T anda=[ -2 I |T. Using these values in (5.12) gives

11 -2 wﬁs)(e)
we(e) = = .
. 5[2 IHwS“’(e)
Applying this to the results shown in Figure 5.9(b) gives the retimed 2DFG shown in

Figure 5.10, which is the result of applying orthogonal 2-D retiming to the 2DFG in
Figure 5.6(a).

Figure 5.10: The result of performing orthogonal 2-D retiming on the 2DFG in Fig-
ure 5.6(a).

A problem with orthogonal 2-D retiming is that s-retiming and a-retiming may give
incompatible results. To show this, we consider an alternative solution to a-retiming in
Example 5.4. The solution r(®)(1) = -8, r(®)(2) = —2, r(4)(3) = —, r(3)(4) = 0, and
r(8)(5) = —6 has the same cost and satisfies all of the a-retiming constraints; however,

~ this new a-retiming solution is not compatible with the s-retiming solution found in
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Example 5.3. To see this, note that for the edge 4 5 1, we found w,(-s)(e) =1 in
Example 5.3 and our new solution to a-retiming gives wﬁa)(e) =0+ (—8)—0= -8, s0

the dependency for this edge in the retimed 2DFG is

1[1 -2][ 1 17/5
W B B R

Since this dependence vector has non-integer elements, the retimed 2DFG is not practical.
The following section introduces a variation of orthogonal 2-D retiming which guarantees
that the retimed dependencies have integer elements for a common set of processing

orders.
3.5 Integer Orthogonal 2-D Retiming

Integer orthogonal 2-D retiming can be used to guarantee that the edge dependence
vectors have integer elements when the scanning vector has the form s = [ 1 k ]T
ors = [ k 1 ]T, where k is a nonnegative integer. Similar to orthogonal 2-D retim-
ing, s-retiming and a-retiming are used in integer orthogonal retiming, but a-retiming
is manipulated in integer orthogonal retiming so the dependencies are guaranteed to
have integer elements. Since integer orthogonal retiming consists of solving two linear

programming problems, it can be solved in polynomial time.

5.5.1 a-retiming for the s; =1 Case

The first constraint for a-retiming is 7(9) (u) — 79 (v) < w(® (e) for all edges u 5 v in E

such that wga)(e) = (. This can be written as

(5 ]-[50]) 2w o1

for all e € E such that wﬁ’)(e) = 0. From r()(u) = r(u) -s, we know Tz (u)sz +ry(u)sy =

r{$)(«), which implies ro(u) = (&) (u) — ry(u)sy because s; = 1 is assumed. Substituting
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this expression for r;(u) into (5.13) gives

([ r) () = ry(u)s, J _ [ r&)(v) = ry(v)s, D ca < w®(e), (5.14)

ry(u) ry(v)
Assuming that a and s are related by a, = —38y and ay = s; = 1, (5.14) can be written
as
=3y(r®) (u) = ry (w)sy — 1 (V) + 1y (v)s,) + (ry (1) = ry(v)) < W@ (e). (5.15)

Since the first constraint for a-retiming applies to the edges with ws")(e) = 0, this implies

w®)(e) = r(&)(u) - (8)(v), so we can replace r(®)(u) — r(9) () with w(®)(e) in (5.15) to get
—sy0((e) + (ry(u) — ry ) (1 + 52) < W (e).
Expanding w(®)(e) = szwz(e) + sywy(e) and w(®(e) = —3ywz(e) + szwy(e) results in
—sy(saws(€) + sywy(e)) + (ry(w) — ry(v))(1 + 52) < ~syws(e) + szwy(e),

which can be rewritten using s, = 1 as

—syw(e) — sgwy(e) + (ry(u) — ry(v))(1 + 35) < —sywz(e) + wy(e)

= (ry(u) —ry(v))(1 + sg) < wy(e)(1+ 33)
= ry(u) —ry(v) < wy(e).

T
Therefore, the first constraint for a-retiming when s = [ 1 k ] is ry (u) =7y (v) < wy(e)

for all e € E such that w(® = 0.

The second constraint for a-retiming is r(®)(u) — r(@) (v) < W@ (u,v) —a-a for all
u,v € V such that D(u,v) > ¢ and Wr(s)(u, v) = 0. Using the left-hand-side of (5.15) to

substitute for () (y) — r{2)(v), this can be written as
=sy(r®(w) = r () + (ry(w) — ry (v))(1 + s5) SW@(u,0)~a-a
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for all u,v € V such that D(u,v) > ¢ and Wr(s)(u,v) = 0. Solving for ry(u) — ry(v), the
second constraint for a-retiming can be written as

W@ (u,v) —a-a+ sy (r®) (uw) — r9(v))
1+ s2

ry(u) —ry(v) <

for all u,v € V such that D(u,v) > c and W,-s)(u,v) = 0. The left-hand side of this
inequality must be an integer, but the right-hand side is not guaranteed to be an integer

(this occurs in Example 5.6), so we can rewrite this inequality as

ry(w) =y (v) < [W“"(u, v) —a-a+sy(r(u) - r<s>(v))J

1+332,

for all u,v € V such that D(u,v) > c and W(’)( ,0) =0.

The cost function for a-retiming is

COST' = Z (%) (v) (Z v(e) — Z 7(e)) .

vev 750 v57?

If we let ky = (3, ¢ v(e) - 3,57 7(€)), then the cost can be written as

COST' = Y (—syra(v) + ry(v))k,

veV

= Z(‘Sy(r(’)('v) —ry(v)sy) + 1y (v))ky
veV

= D (=syr@)ky + Y 1y (0)(1 + 52
veV veV

During a-retiming, Zvev(—syr(”(v))ku and (1 + sy) are constant values, so minimizing
COST' is equivalent to minimizing

COST" = Z ry(v) (Z OEDY 'y(e)) .

vev ?5v 257

T
~ Summarizing, the a-retiming formulation for the case when s = [ 1 k ] is given

by: Minimize

COST" = Z ry(v) (Z v(e) — Z 'y(e)) .

vev 75y v5?

subject to
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L. ry(u) = ry(v) < wy(e) for all e € E such that wﬁs)(e) = 0.

2. ry(u) —ry(v) < [W(a)("’")—a'a'rii%r(a)(")_rm(”))J for all u,v € V such that D(u,v) >

c and W,gs)(u,v) = 0.

After solving for the values of ry(v), the values of r;(v) can be computed using

re(v) = (& (v) — ry(v)sy.

Example 5.6 In this ezample, we use the integer orthogonal retiming formulation for
the case where s = [ 1 k ]T to retime the 2DFG shown in Figure 5.11(a) assuming
8 = [ 1 1 ]T and a = [ -1 1 ]T. The desired clock period is 2 units of time, and
addition and multiplication are assumed to take 1 and 2 units of time, respectively. The
result of s-retiming is shown in Figure 5.11(b), where the numbers on the edges are the

values of wﬁs) (e).

Figure 5.11(c) shows the 2DFG in Figure 5.11(a) with the auziliary edges included to
properly model the fanout of node 1. Since the integer orthogonal retiming formulation

uses the values of wy(e) for all e € E, the values of wy(e) on the auziliary edges in

Figure 5.11(c) are computed using

o 17 w(®) (e)
w(e) = [ a’ w®(e) |
Then a-retiming consists of minimizing

COST" = r(®)(2) + r(9)(3) — r(®)(4) — rla)(5) — £(@)(6) + (@) (7)
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Figure 5.11: (a) The 2DFG which is retimed in Example 5.6. (b) The result of s-retiming.
(c) The 2DFG showing the dependencies on the auxiliary edges. (d) The retimed 2DFG
which achieves the desired clock period of 2 time units.

subject to the causality constraints

ry(l) —ry(4) < 1
ry(l) —ry(5) < 0
ry(1) —- ry(6) < 1
ry(3) —my(2) < 0
ry(4) —my(2) < 0
ry(4) =ry(7) < 0
ry(8) ~ry(3) < 0
ry(5) — ry(7) < 1
ry(6) —ry(7) < 0
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Table 5.5: The values of Wr(s)(u,v), W) (y,v), and D(u,v) for Example 5.6.

W u,v) |1 2 3 4 5 6 7 WOMmu)|l 2 3 4 5 6 7
1 0 000000 1 0 1 -1 1 -1 0 1
2 1011111 2 00 -1 1 -1 0 1
3 1001111 3 00 0 1- 01
4 1010110 4 00 -10-00
5 10010710 5 000 10 0 2
6 2112200 6 00 0 1 -10 1
7 - - - - - 0 7 - - - - o 0

Duv) |1 2 3 4 5 6 7
1 |1 4 43 3 33
2 |21 5 4 4 4 4
3 |3 215 5 5 5
4 |4 37 26 6 2
5 |5 4 37 2 7 2
6 |5 4377 2 2
7 |- - - - - - 0

and the clock period constraints (which use the information in Table 5.5)

ry(1) - "'y(2) <0
ry(1) —ry(3) £ -1
ry(1) —ry(4) < 0
ry(1) = ry(5) < -1
ry(1) =ry(6) < 0
ry(l) - Ty(7) < -1
ry(4) —ry(2) < -1
ry(5) —ry(2) < -1
ry(5) —my(3) < -1

The retimed 2DFG is shown in Figure 5.11(d).

5.5.2 a-retiming for the s, = 1 Case

Using the same techniques as those used in Section 5.5.1 to manipulate a-retiming, we

T
can find that a-retiming has the following formulation when s = [ k 1 ] .
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Minimize

COST" = ¥ (~r4(u)) (Z ORDY 7<e)) .

vev 7250 v5?

subject to

1. rz(u) — rz(v) > wz(e) for all e € E such that w,(‘s)(e) =0.

2. rg(u)-rz(v) > l‘-W(a)(“’"Ha"’f:;g('(’)(")_'(’)("))] forallu,v € V such that D(u,v) >

¢ and W (u,v) = 0.

After solving for the values of r;(v), the values of ry(v) can be computed using

Ty (v) = ,,.(s)(,v) = rz(v)8z.
5.6 Comparisons

In this section we compare the results of using our ILP 2-D retiming technique and
our orthogonal 2-D retiming technique with the previously published chained (34] and

schedule-based [33] 2-D retiming approaches.

Comparisons for the 2DFGs in Figure 5.6(a) and Figure 5.13(a) are given in Table 5.6
and Table 5.7, respectively. The results in these tables assume that the computation time
of each node is one time unit, the desired clock period is one time unit, and the 2DFG
operates on a 256 x 256 data set. Because the number of registers required by the retimed
2DFG is not the same for each of the 2562 iterations, the number of registers required by
the retimed 2DFGs is determined by computing the memory required for each of the 2562
iterations and taking the maximum of these values. To demonstrate this, the memory
requirement for the 2DFG in Figure 5.12(a) is computed assuming a 4 x 4 data set and
processing order specified by s = [1 1] anda = [-1 1 7. At the beginning

of iteration [ 1 2 |T, the four samples which must be stored due to the dependency
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[ 1 0 ]T are indicated in Figure 5.12(b) with an “x” and the one sample which must
be stored due to the dependency [ -1 1 ]T is indicated with an “o0”. Therefore, the
iteration [ 1 2 ]T requires that 5 samples are stored. The reader can verify that the
iteration [ 1 1 ]T requires that 4 samples are stored, the iteration [ 2 2 ]7 requires
that 5 samples are stored. The maximum number of samples that must be stored for

any iteration is 5, so this 2DFG requires 5 registers.

(a) (b)

Figure 5.12: (a) A 2DFG. (b) The samples which must be stored.

Because the 2DFG in Figure 5.6(a) is small, the ILP 2-D retiming technique described
in Section 5.3 was used to obtain the results in Table 5.6. Note that the minimum length
scanning vector feasible for this DFG with schedule-based retimingiss =[ 1 4 ]T. Due
to the relatively large size of the 2DFG in Figure 5.13(a), the orthogonal 2-D retiming
technique in Section 5.4 was used to obtain the results in Table 5.7. Since orthogonal 2-D
retiming resulted in dependence vectors with integer eclements, it was not necessary to use
integer orthogonal retiming for this 2DFG. Figure 5.6(b) shows the retimed version of the
2DFG in Figure 5.6(a) fors=[1 2 |Tanda=[-2 1 |7, and Figure 5.13(b) shows

the retimed version of the 2DFG in Figure 5.13(a) fors=[1 1 J[Tanda=[1 1 ]T.

From Tables 5.6 and 5.7, we can observe that the “schedule-based” retiming technique
in [33] does not find a solution for any of the processing orders chosen. This is because

our techniques have less stringent (but still sufficient) causality constraints than the
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Table 5.6: Memory requirements after retiming the circuit in Figure 5.6(a) assuming a

256 x 256 data set.

scanning retiming number of
vector technique registers
ours 258
s=[0 1]T chained 510
schedule-based || no solution
ours 385
s=[1 2T chained 511

schedule-based

no solution

Table 5.7: Memory requirements after retiming the circuit in Figure 5.13(a) assuming a

256 x 256 data set.

scanning retiming number of
vector technique registers

ours 778

s=[1 2]T chained 1794
schedule-based || no solution

ours 1032

s=[1 1]T chained 2048
schedule-based | no solution

ours 780

s=[2 1]T chained 1288
schedule-based || no solution
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schedule-based technique. Thus, our techniques are compatible with more processing
orders. We can conclude that our techniques offer more flexibility than the schedule-
based retiming technique because our techniques are compatible with more processing

orders.

We can also conclude from Tables 5.6 and 5.7 that our techniques result in solutions
which require considerably less memory than the chained retiming technique in [34].
This is because our formulations are not sensitive to the memory requirements of the
unretimed 2DFG, while the results of chained retiming are dependent on the memory

requirements of the unretimed 2DFG.

5.7 Conclusions

In this chapter we have presented two techniques for retiming 2DFGs. These two tech-
niques attempt to minimize the amount of memory required to implement the 2DFGs
under a given clock period constraint. The ILP 2-D retiming technique solves the entire
2-D retiming problem as a whole but requires long run times to solve. As a result, this
technique should be used only for small 2DFGs. Orthogonal 2-D retiming runs faster
than the ILP technique but occasionally gives incompatible results between s-retiming
and a-retiming. Therefore, orthogonal 2-D retiming should be used when the 2DFG is
too large to solve using ILP 2-D retiming, and integer orthogonal 2-D retiming should be
used when orthogonal 2-D retiming gives incompatible results between s-retiming and

a-retiming.

Our comparisons have shown that the techniques presented in this chapter give con-
siderably better results than previously published techniques. In fact, our techniques can

result in retimed 2DFGs which require less than 50% of the memory hardware required
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by the technique in [34]. Our techniques perform better than the technique in [33] be-
cause our formulations have less stringent (but still sufficient) causality constraints, and
they perform better than chained retiming in [34] because our formulations are not sen-
sitive to the memory requirements of the unretimed 2DFG, while the results of chained

retiming are dependent on the memory requirements of the unretimed 2DFG.

Future research should be directed toward studying the interactions between inter-
iteration parallelism and inter-operation parallelism and toward finding algorithms for
retiming data-flow graphs which operate on signals which have dimensionality greater
than two for applications such as video processing. Register minimization in 2-D retiming
which includes the use of scanning order conversion requires further study. Retiming for
folding for the one-dimensional case has been studied in [28]. Two-dimensional retiming

for folding of 2DFGs is another topic of further research.
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(b)

(a)

Figure 5.13: (a) A 2-D IIR filter. (b) A retimed version of the filter.
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Chapter 6

Conclusions and Future Research
Directions

6.1 Conclusions

We have considered several formal techniques for mapping DSP algorithms to VLSI
architectures. The salient features of these techniques are that they increase the un-
derstanding of the interaction between algorithms and architectures, and they provide
methods for designing new and improved architectures for a wide variety of DSP algo-

rithms.

A new formulation of scheduling was presented in Chapter 2. Using this formula-
tion, we showed that retiming is a special case of scheduling, and we described the
interaction between retiming and scheduling in a mathematical framework. Algorithms
were developed for exhaustively generating all retiming and scheduling solutions for a
strongly connected DFG. By carefully choosing the examples in this chapter, we have
given scheduling solutions for many filters which are of interest to the high-level synthesis
community. This community should find the scheduling results for the biquad filter and

the fifth order wave digital elliptic filter to be of particular interest.
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New expressions were introduced in Chapter 3 for computing the minimum number
of registers required to implement a statically scheduled DFG. Two cases are consid-
ered, namely, the cases where retiming is and is not allowed after the DFG has been
scheduled. These results should be useful in CAD tools used to design memory-efficient

architectures.

The multirate folding transformation was developed in Chapter 4. Within the scope
of multirate folding, the problems of retiming for multirate folding and register minimiza-
tion in (multirate) folded architectures were also considered. Together, the formulations
of multirate folding, retiming for multirate folding, and register minimization provide a
new technique for designing single-rate VLSI architectures for multirate DSP algorithms,

such as the discrete wavelet transform.

In Chapter 5, two techniques for 2-D retiming were presented, namely, ILP 2-D
retiming and orthogonal 2-D retiming. These techniques can reduce the memory usage
in 2-D DSP implementations by over 50%. This is of particular importance due to
the recent high demand for low cost and low power implementations of 2-D DSP for

multimedia applications.

6.2 Future Research Directions

The work presented in this thesis provides the foundation for several interesting future
research projects. In the area of exhaustive scheduling and retiming, it would be in-
teresting to include unfolding [62] in the formulation. Since a formulation is given in
Chapter 2 for folding, it seems natural that a similar formulation can be derived for
unfolding, since unfolding is essentially the inverse operation of folding. A formulation

which includes retiming, folding, and unfolding would be interesting from a theoretical
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point of view as well as a practical point of view.

In the area of register minimization, we have solved the problem of computing the
number of registers required by a scheduled DSP algorithm, but the problem of allo-
cating data to these registers is an open problem. Although several excellent heuristic
techniques have been suggested (e.g., in [51)], [52], and [53]), the topic of memory man-
agement will be an open problem for many years due to the large percentage of chip area

which must be dedicated to memory.

In the area of multirate synthesis, the topics of retiming [35] and scheduling [55]
for multirate DFGs are still under examination. The study of these topics and the
development of formulations for retiming and scheduling similar to those in Chapter 2

(but for the multirate case) would be both useful and interesting.

In the area of multi-dimensional retiming, 2-D retiming with non-linear scanning
orders, such as the Dovetail scan [72], would be an interesting extension. Future research
should also take into account the cost of scan conversion buffers, i.e., the buffers required
to convert the data to and from the traditional line-by-line scanning order. Another area
of future research is to extend the 2-D retiming formulations to higher dimensions. This
problem, which is by no means trivial, has applications in the very popular area. of digital

video processing.

Finally, one research topic, which we have not been able to address, includes most of
the topics covered in this thesis. This topic is to combine 2-D retiming, multirate folding,
and register minimization to develop a multirate/multi-dimensional folding transforma-
tion. Such a transformation would be useful for designing new two-dimensional discrete

wavelet transform architectures [73] [74].
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